$$= \int_0^{\pi/2} \frac{x}{1 + 2\cos^2 \frac{x}{2} - 1} dx + \int_0^{\pi/2} \frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{1 + 2\cos^2 \frac{x}{2} - 1} dx$$

$$= \frac{1}{2} \int_0^{\pi/2} x \sec^2 \frac{x}{2} dx + \int_0^{\pi/2} \tan\frac{x}{2} dx$$

$$= \frac{1}{2} \left[\left(2x \tan\frac{x}{2} \right)_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} 2 \tan\frac{x}{2} dx \right] + -\int_0^{\frac{\pi}{2}} \tan\frac{x}{2} dx$$

$$= \left(x \tan\frac{x}{2} \right)_0^{\pi/2}$$

$$= \frac{\pi}{2} \tan\frac{\pi}{4} - 0 = \frac{\pi}{4}$$

Q. 4. Evaluate:

$$\int_0^{\pi/4} \log(1 + \tan x) \, dx \qquad (CBSE\ Outside\ Delhi, 2011)$$

Solution:

$$I = \int_0^{\pi/4} \log(1 + \tan x) dx$$
 ...(1)

Salan He & South Symposite And

$$\Rightarrow I = \int_0^{\pi/4} \log \left(1 + \tan \left(\frac{\pi}{4} - x \right) \right) dx$$

$$\Rightarrow I = \int_0^{\pi/4} \log \left(1 + \left\{ \frac{\tan \frac{\pi}{4} - \tan x}{1 - \tan \frac{\pi}{4} \tan x} \right\} \right) dx$$

$$\Rightarrow I = \int_0^{\pi/4} \log \left[1 + \frac{1 - \tan x}{1 + \tan x} \right] dx$$

$$\Rightarrow \qquad I = \int_0^{\pi/4} \log \left(\frac{2}{1 + \tan x} \right) dx$$

$$\Rightarrow I = \int_0^{\pi/4} \log 2 \, dx - \int_0^{\pi/4} \log (1 + \tan x) \, dx$$

$$\Rightarrow \qquad \qquad \mathbf{I} = (\log 2) \ [x]_0^{\pi/4} - \mathbf{I}$$

$$\Rightarrow \qquad 2I = \frac{\pi}{4} \log 2$$

$$I = \frac{\pi}{8} \log 2$$
 [from (1)]

AREA OF BOUNDED REGIONS

1. Area of the region bounded by the curve y = f(x), x-axis and the lines x = a and x = b (b > a) is given by :

$$\int_a^b y \, dx = \int_a^b f(x) \, dx$$

2. Area of the region bounded by the curve $x = \phi f(y)$, y-axis and the lines y = c, y = d (d > c) is given by :

$$\int_{c}^{d} x \, dx = \int_{c}^{d} \phi(y) \, dy$$

3. Area of the region bounded by the two curves y = f(x), y = g(x) and lines x = a, x = b is given by :

$$= \int_a^b [f(x) - g(x)] dx, \text{ where in } [a, b], f(x) \ge g(x)$$

4. If $f(x) \ge g(x)$ in [a, c] and $f(x) \le g(x)$ in [c, b], a < c < b,

Area =
$$\int_{a}^{c} [f(x) - g(x)] dx + \int_{c}^{b} [g(x) - f(x)] dx$$

■ Multiple Choice Questions

1. The area bounded by the y-axis, $y = \cos x$ and $y = \sin x$, $0 \le x \le \frac{\pi}{2}$ is

(a) $\sqrt{2}$ (b) $\sqrt{2} + 1$ (c) $\sqrt{2} - 1$ (d) $2(\sqrt{2} - 1)$ 2. If the area bounded by the curves $y^2 = 4ax$ and $y = m\lambda$ is $\frac{a^2}{3}$, then the value of m is

(a)2

(c) $\frac{1}{2}$

(d) none of these

3. The area enclosed within the curve |x| + |y| = 1 is (a) 21

(b) 1.5

(d) none of these (c)2

4. The area of the quadrilateral formed by the lines y = 2x + 3, y = 0, x = 4, x = 6 is

(a) 26 square unit

(b) 20 square unit

(c) 24 square unit

(d) none of these

5. Area bounded by the curve $y = x^3$, the x-axis and the ordinates x = -2 and x = 1 is

$$(a)-a$$

(b) $-\frac{15}{4}$ (c) $\frac{15}{4}$ (d) $\frac{17}{4}$

6. If the area between $x = y^2$ and x = 4 is divided into two square parts by the line x = a, then the value of a is (b) $4^{2/3}$ (c) $2^{3/2}$

7. Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines x = 0 and x = 2 is

 $(a) \pi$

(b) $\frac{\pi}{2}$ (c) $\frac{\pi}{3}$

8. Area of the region bounded by the curve $y^2 = 4x$, y-axis and the line y = 3 is

(a) 2

(b) $\frac{9}{4}$ (c) $\frac{9}{2}$

9. The area bounded by the curve y = x |x|, x-axis and the ordinates x = -1 and x = 1 is

(a)0

(b) $\frac{1}{3}$ (c) $\frac{2}{3}$

$$= \int_0^{\pi/2} \frac{x}{1 + 2\cos^2 \frac{x}{2} - 1} dx + \int_0^{\pi/2} \frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{1 + 2\cos^2 \frac{x}{2} - 1} dx$$

$$= \frac{1}{2} \int_0^{\pi/2} x \sec^2 \frac{x}{2} dx + \int_0^{\pi/2} \tan \frac{x}{2} dx$$

$$= \frac{1}{2} \left[\left(2x \tan \frac{x}{2} \right)_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} 2 \tan \frac{x}{2} dx \right] + -\int_0^{\frac{\pi}{2}} \tan \frac{x}{2} dx$$

$$= \left(x \tan \frac{x}{2} \right)_0^{\pi/2}$$

$$= \frac{\pi}{2} \tan \frac{\pi}{4} - 0 = \frac{\pi}{4}$$

Q. 4. Evaluate:

$$\int_0^{\pi/4} \log(1 + \tan x) \, dx \qquad (CBSE\ Outside\ Delhi, 2011)$$

Solution:

$$I = \int_0^{\pi/4} \log(1 + \tan x) dx \tag{1}$$

$$\Rightarrow I = \int_0^{\pi/4} \log \left(1 + \tan \left(\frac{\pi}{4} - x \right) \right) dx$$

$$\Rightarrow \qquad I = \int_0^{\pi/4} \log \left(1 + \left\{ \frac{\tan \frac{\pi}{4} - \tan x}{1 - \tan \frac{\pi}{4} \tan x} \right\} \right) dx$$

$$\Rightarrow I = \int_0^{\pi/4} \log \left[1 + \frac{1 - \tan x}{1 + \tan x} \right] dx$$

$$\Rightarrow \qquad I = \int_0^{\pi/4} \log \left(\frac{2}{1 + \tan x} \right) dx$$

$$\Rightarrow I = \int_0^{\pi/4} \log 2 \, dx - \int_0^{\pi/4} \log (1 + \tan x) \, dx$$

$$\Rightarrow \qquad \qquad \mathbf{I} = (\log 2) \ [x]_0^{\pi/4} - \mathbf{I}$$

$$\Rightarrow \qquad 2I = \frac{\pi}{4} \log 2$$

$$I = \frac{\pi}{8} \log 2$$
 [from (1)]

AREA OF BOUNDED REGIONS

1. Area of the region bounded by the curve y = f(x), x-axis and the lines x = a and x = b (b > a) is given by:

$$\int_a^b y \, dx = \int_a^b f(x) \, dx$$

2. Area of the region bounded by the curve $x = \phi f(y)$, y-axis and the lines y = c, y = d (d > c) is given by :

$$\int_{c}^{d} x \, dx = \int_{c}^{d} \phi(y) \, dy$$

3. Area of the region bounded by the two curves y = f(x), y = g(x) and lines x = a, x = b is given by :

$$= \int_a^b [f(x) - g(x)] dx, \text{ where in } [a, b], f(x) \ge g(x)$$

4. If $f(x) \ge g(x)$ in [a, c] and $f(x) \le g(x)$ in [c, b], a < c < b,

Area =
$$\int_{a}^{c} [f(x) - g(x)] dx + \int_{c}^{b} [g(x) - f(x)] dx$$

■ Multiple Choice Questions

1. The area bounded by the y-axis, $y = \cos x$ and $y = \sin x$, $0 \le x \le \frac{\pi}{2}$ is

(a) $\sqrt{2}$ (b) $\sqrt{2}+1$ (c) $\sqrt{2}-1$ (d) $2(\sqrt{2}-1)$ 2. If the area bounded by the curves $y^2=4\alpha x$ and $y=m\lambda$ is $\frac{a^2}{3}$, then the value of m is

(a)2

(c) $\frac{1}{2}$ (d) none of these 3. The area enclosed within the curve |x| + |y| = 1 is (a) 21

(b) 1.5

(c)2

(d) none of these

4. The area of the quadrilateral formed by the lines y = 2x + 3, y = 0, x = 4, x = 6 is

(a) 26 square unit

(b) 20 square unit

(c) 24 square unit

(d) none of these

5. Area bounded by the curve $y = x^3$, the x-axis and the ordinates x = -2 and x = 1 is

(b) $-\frac{15}{4}$ (c) $\frac{15}{4}$ (d) $\frac{17}{4}$

6. If the area between $x = y^2$ and x = 4 is divided into two square parts by the line x = a, then the value of a is (b) $4^{2/3}$ (c) $2^{3/2}$

7. Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines x = 0 and x = 2 is

 $(a) \pi$

(b) $\frac{\pi}{2}$

(c) $\frac{\pi}{3}$

8. Area of the region bounded by the curve $y^2 = 4x$, y-axis and the line y = 3 is

(a)2

(b) $\frac{9}{4}$ (c) $\frac{9}{2}$

(d)3

9. The area bounded by the curve y = x |x|, x-axis and the ordinates x = -1 and x = 1 is

(a)0

(b) $\frac{1}{3}$ (c) $\frac{2}{3}$

10. Area lying between the curves $y^2 = 4x$ and y = 2x is

(a)
$$\frac{2}{3}$$

(b)
$$\frac{1}{3}$$

(c)
$$\frac{1}{4}$$

(d) $\frac{3}{4}$

Ans. 1. (c), 2. (a), 3. (c), 4. (a), 5. (d), 6. (b), 7. (a), 8. (b), 9. (c), 10. (b).

Q. 1. Find the area of region bounded by the line y = 3x + 2, the x-axis and the ordinates x = -1 and x = 1. (BSER, 2013)

Solution:

Required Area =
$$\int_{-1}^{1} (3x+2) dx$$

= $3 \int_{-1}^{1} x dx + 2 \int_{-1}^{1} 1 dx = 3 \left[\frac{x^{2}}{2} \right]_{-1}^{1} + 2 [x]_{-1}^{1}$
= $3 \left[\frac{1}{2} - \frac{1}{2} \right] + 2 [1+1]$
= $3 \times 0 + 4 = 4$ square unit

Q. 2. Find the area of the region bounded by the curve $y = x^2$ and the line y = 4. (BSER, 2014) Solution:

$$y = x^2$$
 ...(1)
 $y = 4$...(2)

Solving equations (1) and (2), we get

$$x^2 = 4$$
$$x = \pm 2$$

 \Rightarrow

... The points of intersection are (2, 4) and (-2, 4).

Required Area =
$$2\int_0^4 \sqrt{y} \, dy$$

= $2 \times \frac{2}{3} \left(y^{\frac{3}{2}} \right)_0^4 = \frac{4}{3} 4^{3/2}$
= $\frac{4}{3} (2^2)^{3/2} = \frac{4}{3} .8$
= $\frac{32}{3}$ square units

Q. 3. Find the area of the region bounded by the parabola $y^2 = 4$ ax, its axis and two ordinates x = 4 and x = 9. (JAC, 2013)

Solution:

Required Area =
$$\int_{4}^{9} 2\sqrt{ax} \, dx$$

= $2\sqrt{a} \frac{2}{3} [x^{3/2}]_{4}^{9}$
= $\frac{4\sqrt{a}}{3} (9^{3/2} - 4^{3/2})$
= $\frac{4\sqrt{a}}{3} (27 - 8)$
= $\frac{76\sqrt{a}}{3}$ square units

Q. 4. By using integration method, find the area of the circle $x^2 + y^2 = a^2$. (USEB, 2013) Solution:

Area of the circle = $4\int_0^a \sqrt{a^2 - x^2} dx$ = $4\left[\frac{1}{2} \times \sqrt{a^2 - x^2} + \frac{1}{2}a^2 \sin^{-1}\left(\frac{x}{a}\right)\right]_0^a$ = $2\left[x\sqrt{a^2 - x^2} + a^2 \sin^{-1}\left(\frac{x}{a}\right)\right]_0^a$ = $2\left[a^2 \sin^{-1}(1)\right]$ = $2a^2 \frac{\pi}{2}$ = πa^2 square units

 $\{(x, y): x^2 + y^2 \le 1 \le x + y\}$ (BSEB, 2014)

Solution:

Required Area = Area of Quadrant OAB

- Area of AOAB

Q. 2. Find the area of smaller part bounded by the circle $x^2 + y^2 = a^2$ and the line $x = \frac{a}{\sqrt{2}}$.(BSER, 2013) Solution :

Area of the smaller part

$$= 2\int_{\frac{a}{\sqrt{2}}}^{a} \sqrt{a^{2} - x^{2}} \, dx \text{ (Due to symmetry)}$$

$$= 2\left[\frac{1}{2}x\sqrt{a^{2} - x^{2}} + \frac{1}{2}a^{2}\sin^{-1}\left(\frac{x}{a}\right)\right]_{a/\sqrt{2}}^{a}$$

$$= \left[x\sqrt{a^{2} - x^{2}} + a^{2}\sin^{-1}\left(\frac{x}{a}\right)\right]_{a/\sqrt{2}}^{a}$$

$$= \left[a\sqrt{a^{2} - a^{2}} + a^{2}\sin^{-1}(1)\right]$$

$$-\left[\frac{a}{\sqrt{2}}\sqrt{a^{2} - \frac{a^{2}}{2}} + a^{2}\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)\right]$$

$$= a^{2}\frac{\pi}{2} - \left[\frac{a}{\sqrt{2}}\cdot\frac{a}{\sqrt{2}} + a^{2}\frac{\pi}{4}\right]$$

$$= a^{2}\frac{\pi}{2} - \frac{a^{2}}{2}\cdot\frac{a^{2}\pi}{4}$$

$$= \frac{a^2\pi}{4} - \frac{a^2}{2}$$
$$= a^2 \left(\frac{\pi}{4} - \frac{1}{2}\right) \text{ square units}$$

Q. 3. Calculate the area bounded by the parabola $y^2 = 4ax$ and its latus rectum. (USEB, 2010) Solution:

The equation of the parabola is $y^2 = 4ax$...(i)

Here the focus S is (a, 0), let latus rectum is LSL' which is a line parallel to *y*-axis at a distance of *a* from it so its equation is x = a.

Since all the power of y in the curve (i) are even, so the curve will be symmetrical about x-axis.

∴ Required Area

= area LOL'L
= 2 × area LOSL
= 2
$$\int_0^a y \, dx = 2 \int_0^a 2\sqrt{ax} \, dx$$

= $4\sqrt{a} \frac{2}{3} [x^{3/2}]_0^a = \frac{8}{3} a^2$ sq. units.

Q. 4. Find the area of the region bounded by the parabola $y = x^2$ and y = |x|. (AI CBSE, 2013) Solution:

The given curves are

$$y = x^{2} \qquad ...(1)$$
and
$$y = |x| \qquad ...(2)$$

$$(1) \text{ and } (2) \text{ give}$$

$$x^{2} = |x|$$

$$\text{Case I} \qquad \text{When } x \leq 0$$

$$x^{2} = -x$$

$$\Rightarrow \qquad x (x + 1) = 0$$

x = 0, -1

∴ From (1),
$$y = 0, 1$$

Case II when $x \ge 0$

$$x^{2} = x$$

$$\Rightarrow x(x-1) = 0$$

$$\Rightarrow x = 0, 1$$

∴ From (1),

$$y = 0,1$$

Hence, (1) and (2) intersect at the points O (0, 0), A(-1, 1) and B(1, 1).

Required Area = 2 Area OPBO (By symmetry)
= 2 [Area OQBLO - Area OPBLO]
=
$$2 \left[\int_0^1 x \, dx - \int_0^1 x^2 \, dx \right]$$

= $2 \left[\left(\frac{x^2}{2} \right)_0^1 - \left(\frac{x^3}{3} \right)_0^1 \right]$
= $2 \left(\frac{1}{2} - \frac{1}{3} \right) = \frac{1}{3}$ square unit

Q. 1. Using integration, find the area of the triangle PQR, co-ordinates of whose vertices are P(2, 0), Q (4, 5) and R (6, 3). (AI, CBSE, 2014 (Comptt.)] **Solution:**

Equation of line PQ is

$$y - 0 = \frac{5 - 0}{4 - 2}(x - 2)$$

$$\Rightarrow \qquad 2y = 5x - 10$$

$$\Rightarrow \qquad y = \frac{5}{2}x - 5 \qquad \dots (1)$$

Equation of line QR is

$$y-5 = \frac{3-5}{6-4}(x-4)$$

$$\Rightarrow 2y-10 = -2x+8$$

$$\Rightarrow 2y = -2x+18$$

$$\Rightarrow y = -x+9$$
Example 1 and 1 and 2 a

Equation of line PR is

$$y - 0 = \frac{3 - 0}{6 - 2}(x - 2)$$

$$\Rightarrow \qquad 4y = 3x - 6$$

$$\Rightarrow \qquad y = \frac{3}{4}x - \frac{3}{2} \qquad(3)$$

Area of the triangle PQR

$$y = \frac{4}{4}x - \frac{1}{2}$$
ea of the triangle PQR
$$= \text{Area PQL + Area LQRM - Area PRM}$$

$$= \int_{2}^{4} \left(\frac{5}{2}x - 5\right) dx + \int_{4}^{6} (-x + 9) dx - \int_{2}^{6} \left(\frac{3}{4}x - \frac{3}{2}\right) dx$$

$$= \left(\frac{5x^{2}}{4} - 5x\right)_{2}^{4} + \left(-\frac{x^{2}}{2} + 9x\right)_{4}^{6} - \left(\frac{3x^{2}}{8} - \frac{3}{2}x\right)_{2}^{6}$$

$$= [(20 - 20) - (5 - 10)] + [(-18 + 54) - (-8 + 36)]$$

$$= \left[\left(\frac{27}{2} - 9\right) - \left(\frac{3}{2} - 3\right)\right]$$

$$= 5 + 8 - 6$$

$$= 7 \text{ square units}$$

Q. 2. Using integration, find the area of the region bounded by the triangle whose vertices are (-1, 2), (1, 5) and (3, 4). (AI, CBSE, 2014)

 $A \longrightarrow (-1, 2)$

Solution: Let

and
$$\begin{array}{c}
B \longrightarrow (1,5) \\
C \longrightarrow (3,4)
\end{array}$$

$$\begin{array}{c}
Y \\
5 \\
4 \\
3
\end{array}$$

$$\begin{array}{c}
B (1,5) \\
C (3,4)
\end{array}$$

$$\begin{array}{c}
C (3,4) \\
X \\
-2-1 \\
M
\end{array}$$

$$\begin{array}{c}
1 & 2 & 3 & 4 & 5 & 6 \\
N & L
\end{array}$$

then, equation of line AB is

(-1,0) V_{\downarrow} (1,0)

$$y-2 = \frac{5-2}{1+1} (x+1)$$

$$\Rightarrow \qquad 2y-4 = 3x+3$$

$$\Rightarrow \qquad 2y-3x = 7$$
...(1)

Equation of line BC is

$$y-5 = \frac{4-5}{3-1} (x-1)$$

$$\Rightarrow 2y-10 = -x+1$$

$$\Rightarrow 2y+x=11$$
Equation of line AC is

$$y-2 = \frac{4-2}{3+1} (x+1)$$

$$\Rightarrow \qquad 4y-8 = 2x+2$$

$$\Rightarrow \qquad 4y-2x = 10$$

$$\Rightarrow \qquad 2y-x = 5$$
(3)

Required Area

= Area of OABC

$$= \int_{-1}^{1} \frac{3x+7}{2} dx + \int_{1}^{3} \frac{11-x}{2} dx - \int_{-1}^{3} \frac{x+5}{2} dx$$

$$= \frac{1}{2} \left(\frac{3x^{2}}{2} + 7x \right)_{-1}^{1} + \frac{1}{2} \left(11x - \frac{x^{2}}{2} \right)_{1}^{3} - \frac{1}{2} \left(\frac{x^{2}}{2} + 5x \right)_{-1}^{3}$$

$$= \frac{1}{2} \left[\left(\frac{3}{2} + 7 \right) - \left(\frac{3}{2} - 7 \right) \right] + \frac{1}{2} \left[\left(33 - \frac{9}{2} \right) - \left(11 - \frac{1}{2} \right) \right]$$

$$- \frac{1}{2} \left[\left(\frac{9}{2} + 15 \right) - \left(\frac{1}{2} - 5 \right) \right]$$

= 7 + 9 - 12

= 4 square units

Q. 3. Using integration, find the area of the region bounded by the lines 2x + y = 4, 3x - 2y = 6 and x - 3y + 5 = 0. [AI, CBSE, 2014 (Comptt.)] Solution:

The given lines are

$$2x + y = 4$$
 ...(1)
 $3x - 2y = 6$...(2)
 $x - 3y + 5 = 0$

Solving equations (1) and (2), we get

$$x = 2, y = 0$$

Solving equations (2) and (3), we get

$$x = 4, y = 3$$

Solving equations (3) and (1), we get

$$x = 1, y = 2$$

Required Area = Area of \triangle ABC

= Area MCBN – [Area MCA + Area ANB]

$$= \int_{1}^{4} \left(\frac{x+5}{3} \right) dx - \int_{1}^{2} (4-2x) dx - \int_{2}^{4} \left(\frac{3x-6}{2} \right) dx$$

$$= \frac{1}{3} \left(\frac{x^2}{2} + 5x \right)_1^4 - (4x - x^2)_1^2 - \frac{1}{2} \left(\frac{3x^2}{2} - 6x \right)_2^4$$

$$= \frac{1}{3} \left\{ (8 + 20) - \left(\frac{1}{2} + 5 \right) \right\} - \left\{ (8 - 4) - (4 - 1) \right\}$$

$$- \frac{1}{2} \left\{ (24 - 24) - (6 - 12) \right\}$$

$$= \frac{45}{6} - 1 - 3$$

$$= \frac{21}{6}$$

$$= \frac{7}{2} \text{ square units}$$

Q. 4. Using integration, find the area bounded by the curve $x^2 = 4y$ and the line x = 4y - 2.

[CBSE, 2013; 14 (Comptt.)]

Solution:

The equations of the curves are

$$x^2 = 4y \qquad \dots (1)$$

and y = 4y - 2 ...(2) Solving equations (1) and (2), we get

$$x^{2} - x = 2$$

$$\Rightarrow \qquad x^{2} - x - 2 = 0$$

$$\Rightarrow \qquad (x - 2)(x + 1) = 0$$

 $\Rightarrow x = 2, -$ From (2),

when x = 2, y = 1and when $x = -1, y = \frac{1}{4}$

Hence the curves (1) and (2) intersect at the points

A (2, 1) and B
$$\left(-1, \frac{1}{4}\right)$$

Required Area

= Area OBAO
= Area LBAML – Area LBOAML
=
$$\int_{-1}^{2} \frac{x+2}{4} dx - \int_{-1}^{2} \frac{x^{2}}{4} dx$$

= $\frac{1}{4} \left(\frac{x^{2}}{2} + 2x \right)_{-1}^{2} - \frac{1}{4} \left(\frac{x^{3}}{3} \right)_{-1}^{2}$
= $\frac{1}{4} \left\{ (2+4) - \left(\frac{1}{2} - 2 \right) - \frac{1}{4} \left(\frac{8}{3} + \frac{1}{3} \right) \right\}$
= $\frac{9}{8}$ square units

Q. 5. Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle $x^2 + y^2 = 32$. (CBSE, 2014)

Solution:

The equations of the curves are

$$y = x$$
 (1)
 $x^2 + y^2 = 32$...(2)

Solving equations (1) and (2), we get

$$x = \pm 4, y = \pm 4$$

Hence the line (1) and the circle (2) intersect at the points B (4, 4) and C (-4, -4).

Required Area

= Area OMBO + Area AMBA,
=
$$\int_0^4 x \, dx + \int_4^{4\sqrt{2}} \sqrt{32 - x^2} \, dx$$

= $\left(\frac{x^2}{2}\right)_0^4 + \left[\frac{1}{2}x\sqrt{32 - x^2} + \frac{1}{2}.32.\sin^{-1}\left(\frac{x}{4\sqrt{2}}\right)\right]_4^{4\sqrt{2}}$
= $8 + 16.\frac{\pi}{2} - \left[\frac{1}{2}.4.4 + \frac{1}{2}.32.\frac{\pi}{4}\right]$
= $8 + 8\pi - 8 - 4\pi$
= 4π square units

Q. 6. Find the area of the region $\{(x, y) : y^2 \le 6ax\}$ and $x^2 + y^2 \le 16a^2$ using method of integration.

(AICBSE, 2013)

Solution:

The given curves are

$$y^2 = 6ax \qquad \dots (1)$$

 $x^2 + y^2 \le 16a^2$...(2) and

Solving (1) and (2), we get

$$x^2 + 6ax = 16a^2$$

$$\Rightarrow \qquad x^2 + 6ax - 16a^2 = 0$$

$$\Rightarrow \quad x^2 + 8ax - 2ax - 16a^2 = 0$$

$$\Rightarrow x(x+8a) - 2a(x+8a) = 0$$

$$\Rightarrow (x + 8a)(x - 2a) = 0$$

$$\Rightarrow$$
 $x = -8a, 2a$

∴ From (1),

when
$$x = -8a$$
, $y^2 = 6a (-8a) = -48a^2$

which is inadmissible as it gives imaginary values of y.

when
$$x = 2a$$
, $y^2 = 6a$ $(2a) = 12a^2$

$$\Rightarrow \qquad \qquad y = \pm 2\sqrt{3}a$$

Hence, the points of integration of the curves (1) and

A
$$(2a, 2\sqrt{3}a)$$
 and B $(2a, -2\sqrt{3}a)$

Required Area

eu Area
$$= 2 \text{ area OCAO} \qquad \text{(Due to symmetry)}$$

$$= 2 [\text{Area OMAO} + \text{Area AMCA}]$$

$$= \left[\int_{0}^{2a} \sqrt{6ax} \ dx + \int_{2a}^{4a} \sqrt{16a^{2} - x^{2}} \ dx \right]$$

$$= 2\sqrt{6a} \frac{2}{3} (x^{3/2})_{0}^{2a}$$

$$+ 2 \left[\frac{1}{2} \times \sqrt{16a^{2} - x^{2}} + \frac{1}{2} (16a^{2}) \sin^{-1} \left(\frac{x}{4a} \right) \right]_{2a}^{4a}$$

$$= \frac{4\sqrt{6a}}{3} 2^{3/2} a^{3/2} + 2 [0 + 8a^{2} \sin^{-1}(1)]$$

$$-2 \left[\frac{1}{2} \cdot 2a \cdot 2\sqrt{3}a + 8a^{2} \sin^{-1} \left(\frac{1}{2} \right) \right]$$

$$= \frac{16\sqrt{3}a^{2}}{3} + 8\pi a^{2} - 4\sqrt{3}a^{2} - \frac{8\pi a^{2}}{3}$$

$$= \frac{16\sqrt{3}a^{2}}{3} + \frac{16\pi a^{2}}{3} - 4\sqrt{3}a^{2}$$

$$= \left(\frac{16\sqrt{3}a^{2}}{3} + \frac{16\pi a^{2}}{3} \right) \text{ square units}$$

Q. 7. Find the area of the region $\{(x, y) : y^2 \le 4x,$ $4x^2 + 4y^2 \le a$ using method of integration.

(AI CBSE, 2013)

Solution:

 \Rightarrow

The given curves are

$$y^2 = 4x$$
 ...(1)

and $4x^2 + 4y^2 = a$...(2)

Solving (1) and (2), we get

 $4x^2 + 16x = 9$
 $\Rightarrow 4x^2 + 16x - 9 = 0$
 $\Rightarrow 4x^2 + 18y - 2x - 9 = 0$

$$\Rightarrow 2x (2x + 9) - 1 (2x + a) = 0
\Rightarrow (2x + 9) (2x - 1) = 0$$

$$\Rightarrow \qquad x = -\frac{9}{2}, \frac{1}{2}$$

 \therefore from (1).

when
$$x = -\frac{9}{1}, y^2 = -18$$

which is inadmissible it gives imaginary values of y.

and when
$$x = \frac{1}{2}, y^2 = \sqrt{2}$$

$$\Rightarrow \qquad \qquad y = \pm \sqrt{2}$$

Hence, the points of intersection of (1) and (2) are

$$A\left(\frac{1}{2},\sqrt{2}\right)$$
 and $B\left(\frac{1}{2},-\sqrt{2}\right)$

Required Area

(due to symmetry)

= 2 [Area OMAO + Area AMCA]

$$= 2 \left[\int_0^{1/2} \sqrt{4x} \, dx + \int_{1/2}^{3/2} \sqrt{\frac{9}{4} - x^2} \, dx \right]$$

$$= 2.2 \int_0^{1/2} \sqrt{x} \, dx + 2 \int_{1/2}^{3/2} \sqrt{\left(\frac{3}{2}\right)^2 - x^2} \, dx$$

$$= 4. \frac{2}{3} \left(x^{3/2}\right)_0^{1/2} + 2 \left[\frac{1}{2} \times \sqrt{\frac{9}{4} - x^2} + \frac{1}{2} \cdot \frac{9}{4} \sin^{-1} \left\{\frac{x}{(3/2)}\right\}\right]_{1/2}^{3/2}$$

$$= \frac{8}{3.2\sqrt{2}} + \left[x\sqrt{\frac{9}{4} - x^2} + \frac{9}{4}\sin^{-1}\left(\frac{2x}{3}\right)\right]_{1/2}^{3/2}$$

$$=\frac{4}{3\sqrt{2}} + \left[0 + \frac{9}{4}\sin^{-1}(1)\right] - \left[\frac{1}{2}\sqrt{2} + \frac{9}{4}\sin^{-1}\left(\frac{1}{3}\right)\right]$$

$$=\frac{4}{3\sqrt{2}}+\frac{9\pi}{8}-\frac{1}{\sqrt{2}}-\frac{9}{4}\sin^{-1}\left(\frac{1}{3}\right)$$

$$= \left[\frac{4}{3\sqrt{2}} + \frac{9\pi}{8} - \frac{9}{4} \sin^{-1} \left(\frac{1}{3} \right) \right] \text{ square units}$$

Q. 8. Find the area of the region enclosed between the two circles $x^2 + y^2 = 1$ and $(x - 1)^2 + y^2 = 1$. [CBSE, 2013 (Comptt.)]

Solution:

The equations of the two circles are

$$x^2 + y^2 = 1$$
 ...(1)
 $(x-1)^2 + y^2 = 1$...(2)

(1) is a circle with centre (0, 0) and radius 1 unit.

(2) is a circle with centre (1, 0) and radius 1 unit.

Solving equations (1) and (2), we get

$$x^{2} = (x-1)^{2}$$

$$\Rightarrow \qquad x^{2} = x^{2} - 2x + 1$$

$$\Rightarrow$$
 $2x = 1$

$$\Rightarrow$$
 $x = \frac{1}{2}$

$$\therefore \text{ from } (1), y = \pm \frac{3}{\sqrt{2}}$$

Hence, the points of intersection of (1) and (2) are

$$A\left(\frac{1}{2}, \frac{3}{\sqrt{2}}\right)$$
 and $B\left(\frac{1}{2}, -\frac{3}{\sqrt{2}}\right)$.

Required Area

= 2 Area OACO

= 2 (Area OAMO + Area MACM)

$$= 2 \left[\int_{0}^{1/2} \sqrt{1 - (x - 1)^{2}} \, dx + \int_{1/2}^{1} \sqrt{1 - x^{2}} \, dx \right]$$

$$= 2 \left[\frac{1}{2} (x - 1) \sqrt{1 - (x - 1)^{2}} + \frac{1}{2} \sin^{-1}(x - 1) \right]_{0}^{1/2}$$

$$+ 2 \left[\frac{1}{2} x \sqrt{1 - x^{2}} + \frac{1}{2} \sin^{-1}x \right]_{1/2}^{1}$$

$$= \left[(x - 1) \sqrt{1 - (x - 1)^{2}} + \sin^{-1}(x - 1) \right]_{0}^{1/2}$$

$$+ \left[x \sqrt{1 - x^{2}} + \sin^{-1}x \right]_{1/2}^{1}$$

$$= \left[-\frac{1}{2} \frac{\sqrt{3}}{2} + \sin^{-1}\left(-\frac{1}{2}\right) \right] - \left[0 + \sin^{-1}(-1) \right]$$

$$+ \left[0 + \sin^{-1}(1) \right] - \left[\frac{1}{2} \frac{\sqrt{3}}{2} + \sin^{-1}\left(\frac{1}{2}\right) \right]$$

$$= -\frac{\sqrt{3}}{4} - \frac{\pi}{6} + \frac{\pi}{2} + \frac{\pi}{2} - \frac{\sqrt{3}}{4} - \frac{\pi}{6}$$

$$= \left(-\frac{\sqrt{3}}{2} + \frac{2\pi}{3} \right) \text{ square units }$$

Q. 9. Find the area of the region enclosed between the circles $x^2 + y^2 = 4$ and $(x - 2)^2 + y^2 = 4$.

[CBSE, 2013 (Comptt.), CBSE, 13]

Solution:

The equations of the two circles are

$$x^{2} + y^{2} = 4$$
 ...(1)
and $(x-2)^{2} + y^{2} = 4$...(2)

- (1) is a circle with centre (0, 0) and radius 2 units.
- (2) is a circle with centre (2, 0) and radius 2 units.

$$x^{2} = (x - 2)^{2}$$

$$\Rightarrow \qquad x^{2} = x^{2} - 4x + 4$$

$$\Rightarrow \qquad 4x = 4$$

$$\Rightarrow \qquad x = 1$$

.: from (1),

$$y = \pm \sqrt{3}$$

Hence, the points of intersection of (1) and (2) are A (1, $\sqrt{3}$) and B (1, $-\sqrt{3}$).

Required Area

$$= 2 \left(\text{Area OAMO} + \text{Area MACM} \right)$$

$$= 2 \left[\int_{0}^{1} \sqrt{4 - (x - 2)^{2}} \, dx + \int_{1}^{2} \sqrt{4 - x^{2}} \, dx \right]$$

$$= 2 \left[\frac{1}{2} (x - 2) \sqrt{4 - (x - 2)^{2}} + \frac{1}{2} \cdot 4 \sin^{-1} \left(\frac{x - 2}{2} \right) \right]_{0}^{1}$$

$$+ 2 \left[\frac{1}{2} x \sqrt{4 - x^{2}} + \frac{1}{2} \cdot 4 \sin^{-1} \left(\frac{x}{2} \right) \right]_{1}^{2}$$

$$= \left[(x - 2) \sqrt{4 - (x - 2)^{2}} + 4 \sin^{-1} \left(\frac{x - 2}{2} \right) \right]_{0}^{1}$$

$$+ \left[x \sqrt{4 - x^{2}} + 4 \sin^{-1} \left(\frac{x}{2} \right) \right]_{1}^{2}$$

$$= \left[(-1) \sqrt{3} + 4 \sin^{-1} \left(-\frac{1}{2} \right) \right] - \left[0 + 4 \sin^{-1} \left(-1 \right) \right]$$

$$+ \left[0 + 4 \sin^{-1} \left(1 \right) \right] - \left[1 \cdot \sqrt{3} + 4 \sin^{-1} \left(\frac{1}{2} \right) \right]$$

$$= -\sqrt{3} - 4\frac{\pi}{6} + 4 \cdot \frac{\pi}{2} + 4\frac{\pi}{2} - \sqrt{3} - 4\frac{\pi}{6}$$

$$= \left(-2\sqrt{3} + \frac{8\pi}{3}\right) \text{ square units}$$

Q. 10. Using integration, find the area of the region enclosed between two circles $x^2 + y^2 = 9$ and $(x-3)^2 + y^2 = 9$. [CBSE, 2013, (Comptt.)]

Solution:

The equations of the two circles are

$$x^2 + y^2 = 9$$
 ...(1)
and $(x-3)^2 + y^2 = 9$...(2)

- (1) is a circle with centre (0, 0) and radius 3 units.
- (2) is a circle with centre (3, 0) and radius 3 units. Solving equations (1) and (2), we get

$$x^{2} = (x - 3)^{2}$$

$$\Rightarrow \qquad x^{2} = x^{2} - 6x + 9$$

$$\Rightarrow \qquad 6x = 9$$

$$\Rightarrow \qquad x = \frac{3}{2}$$

 \therefore from (1),

$$y^2 = 9 - x^2 = 9 - \frac{9}{4} = \frac{27}{4}$$

 $\Rightarrow \qquad \qquad y = \pm \frac{3\sqrt{3}}{2}$

Hence, the points of intersection of (1) and (2) are

$$A\left(\frac{3}{2},\frac{3\sqrt{3}}{2}\right)$$
 and $B\left(\frac{3}{2},\frac{-3\sqrt{3}}{2}\right)$

Required Area

= 2 Area OACO

= 2 (Area OAMO + Area MACM)

$$= 2 \left[\int_0^{3/2} \sqrt{9 - (x - 3)^2} \, dx + \int_{3/2}^3 \sqrt{9 - x^2} \, dx \right]$$

$$= 2 \left[\frac{1}{2} (x - 3) \sqrt{9 - (x - 3)^2} + \frac{1}{2} \cdot 9 \cdot \sin^{-1} \left(\frac{x - 3}{3} \right) \right]_0^{3/2}$$

$$+ 2 \left[\frac{1}{2} x \sqrt{9 - x^2} + \frac{1}{2} \cdot 9 \cdot \sin^{-1} \left(\frac{x}{3} \right) \right]^3$$

$$= -\frac{9\sqrt{3}}{4} - 9\frac{\pi}{6} + \frac{9\pi}{2} + \frac{9\pi}{2} - \frac{9\sqrt{3}}{4} - 9 \cdot \frac{\pi}{6}$$
$$= \left(-\frac{9\sqrt{3}}{2} + 6\pi\right) \text{ square units}$$

Q. 11. Find the area of the region bounded between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$, where a > 0. (CBSE, Delhi, 2008)

Solution:

Given
$$y^2 = 4ax$$
 ...(1) and $x^2 = 4ay$...(2)

Curve (1) & (2) are both parabolas with vertices (0, 0). Solving equations (1) and (2), we get intersect points (0, 0) and (4a, 4a).

Hence, Required Area

$$= \int_0^{4a} (y_2 - y_1) dx$$
$$= \int_0^{4a} \left(2\sqrt{(ax)} - \frac{x^2}{4a} \right) dx$$

From (1) & (2),

From (1) & (2),

$$y = 2 \sqrt{ax} \text{ and } \frac{x^2}{4a}$$

$$= \left[\left\{ \frac{4}{3} \sqrt{a} x^{3/2} \right\} - \frac{x^3}{12a} \right]_0^{4a}$$

$$= \frac{4}{3} \sqrt{a} (4a)^{3/2} - \frac{(4a)^3}{12a}$$

$$= \frac{32}{3} a^2 - \frac{16}{3} a^2 = \frac{16}{3} a^2 \text{ sq. units}$$

Q. 12. The area between $x = y^2$ and x = 4 is divided into two equal parts by the line x = a. Find the value of a.

Solution:

Given
$$x = y^2$$
 ...(1) and $x = 4$...(2)

Equation (1) is parabola whose vertex is (0, 0) and eq. (2) is a line whose parallel to *y*-axis and its distance is 4 units.

Let line x = a, its divide in two parts, let cut the area A_1 from the line x = 4. Thus:

$$A_1 = 2 \int_0^4 y \, dx = 2 \int_0^4 x^{1/2} \, dx$$
$$= \left[\frac{4}{3} |x^{3/2}|_0^4 \right] = \frac{4}{3} (2^2)^{3/2} = \frac{32}{3}$$

If cutting the area A_2 through $x = a_1$

then

$$\mathbf{A}_2 = 2\int_0^a x^{1/2} dx = \frac{4}{3}a^{3/2}$$

According to question,

$$2A_2 = A_1$$

$$\frac{8}{3}a^{3/2} = \frac{32}{3}$$

$$\Rightarrow \qquad a = (4)^{2/3}$$

Q. 13. Using integration, find the area of the triangle whose vertices are (1, 3), (2, 5) and (3, 4).

(JAC, 2014)

Solution:

Equation of line AB is

$$y-3 = \frac{5-3}{2-1}(x-1)$$

$$\Rightarrow \qquad y-3 = 2x-2$$

$$\Rightarrow \qquad y = 2x+1 \qquad \dots (1)$$

Equation of line BC is

$$= 2\int_0^2 y \, dx$$

$$= 2\int_0^2 \sqrt{8x} \, dx$$

$$= 2\int_0^2 2\sqrt{2x} \, dx = 4\int_0^2 \sqrt{2x} \, dx$$

$$= 4\sqrt{2} \left[\frac{x^{3/2}}{3/2} \right]_0^2 = 4\sqrt{2} \left[\frac{(2)^{3/2}}{3/2} - 0 \right]$$

$$= 4\sqrt{2} \times \frac{2\sqrt{2}}{3} \times 2 = \frac{32}{3} \text{ square units}$$

Q. 16. Find the area bounded by curve $x^2 = 4y$ and the line y = 4. (USEB, 2015)

Solution:

Given $x^2 = 4y$...(1) and y = 4 ...(2)

Equation (1) is parabola whose vertex is (0, 0) and equation (2) is a line which is parallel to x-axis and its distance is 4 units.

Hence, required area

$$= 2\int_0^4 x \, dy$$

$$= 2\int_0^4 \sqrt{4y} \, dy$$

$$= 2\int_0^4 2\sqrt{y} \, dy = 4\left[\frac{y^{3/2}}{3/2}\right]_0^4$$

$$= 4\left[\frac{(4)^{3/2}}{3/2} - 0\right] = 4 \times \frac{2}{3} \times 4 \times 2$$

$$= \frac{64}{3} \text{ square unit}$$

NCERT QUESTIONS

Q. 1. Sketch the graph of y = |x+3| and evaluate $\int_{6}^{0} |x+3| dx$.

Solution:

Given
$$y = |x+3| = \begin{cases} x+3, & x+3 \ge 0 \\ -(x+3), & x+3 < 0 \end{cases}$$

 $\Rightarrow \qquad y = \begin{cases} x+3, & x \ge -3 \\ -x-3, & x < -3 \end{cases}$
Thus $y = x+3$, for $x \ge -3$
and $y = -x-3$, for $x < -3$

Clearly y = x + 3 is a straight line through (-3, 0) and (0, 3) which lie on x-axis and y-axis respectively. Similarly y = -x - 3 also a straight line.

Hence, required area

$$= \int_{-6}^{0} |x+3| dx$$

$$= \int_{-6}^{-3} |x+3| dx + \int_{-3}^{0} |x+3| dx$$

$$= \int_{-6}^{-3} (-x-3) dx + \int_{-3}^{0} (x+3) dx$$

$$= -\left(\frac{x^{2}}{2} + 3x\right)_{-6}^{3} + \left(\frac{x^{2}}{2} + 3x\right)_{-3}^{0}$$

$$= -\left(\frac{9}{2} - 9 - \frac{36}{2} + 18\right) + \left(0 - \frac{9}{2} + 9\right)$$

$$= -\left(\frac{9}{2} - 18 + 18 - 9\right) + \left(\frac{9}{2}\right)$$

$$= \frac{9}{2} + \frac{9}{2} = 9 \text{ sq. units}$$

Q. 2. Find the area enclosed between the parabola $y^2 = 4ax$ and the line y = mx.

Solution:

Given
$$y^2 = 4ax$$
 ...(1)
and $y = mx$...(2)

Clearly $y^2 = 4ax$ is a parabola which passes through origin and line y = mx is a line passing through origin. Solving equations (1) and (2), we get the points of

intersection as (0, 0) and $\left(\frac{4a}{m^2}, \frac{4a}{m}\right)$.

Required area

= Area of OBAMO – Area of OAMO = $\int_0^{4a/m^2} (\text{for parobola } y) dx - \int_0^{4a/m^2} (\text{for line } y) dx$ = $\int_0^{4a/m^2} 2\sqrt{ax} dx - \int_0^{4a/m^2} mx dx$

...(2)

$$=\left[\frac{32a^2}{3m^3}-\frac{8a^2}{m^3}\right]=\left(\frac{8a^2}{3m^3}\right)\text{sq. units}$$

Q. 3. Find the area bounded by the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ and the line } \frac{x}{a} + \frac{y}{b} = 1.$$
Solution

We have
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 ...(1)

and
$$\frac{x}{a} + \frac{y}{b} = 1$$

Now, required area

$$= \int_0^a (\text{for an ellipse } y) dx - \int_0^a (\text{for a line } y) dx$$

$$= \int_0^a \frac{b}{a} \sqrt{a^2 - x^2} dx - \int_0^a \frac{b(a - x)}{a} dx$$

$$= \int_0^a \frac{b}{a} \sqrt{a^2 - x^2} dx - \int_0^a \frac{b(a - x)}{a} dx$$

$$= \int_0^a \left[\frac{x\sqrt{a^2 - x^2}}{2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right]_0^a - \frac{b}{a} \left[ax - \frac{x^2}{2} \right]_0^a$$

$$= \frac{ab}{a} (\sin^{-1} 1 - \sin^{-1} 0) - \left(ab - \frac{ab}{2} \right)$$

$$= \left(\frac{\pi ab}{4} - \frac{ab}{2} \right) = \frac{ab}{4} (\pi - 2) \text{ sq. units.}$$

Q. 4. Using integration, find the area of the region bounded by the triangle whose sides are y = 2x + 1, (Raj. Board, 2014) y = 3x + 1 and x = 4.**Solution:**

Given,
$$y = 2x + 1$$
 ...(1)
 $y = 3x + 1$...(2)

From equations (1) and (2),
$$x = 0$$
, $y = 1$
From equations (2) and (3), $x = 4$, $y = 13$
From equations (3) and (1),

$$x = 4, y = 9$$

= Ārea of ABLOA – Area of AOLCA
=
$$\int_0^4 y \ dx$$
 ((for AB) – $\int_0^4 y \ dx$ (for AC)
= $\int_0^4 (3x+1) \ dx - \int_0^4 (3x+1) \ dx$

$$= \int_0^4 (x) \ dx = \left[\frac{x^2}{2} \right]_0^4 = [8 - 0] = 8 \text{ sq. units}$$

DIFFERENTIAL EQUATIONS

1. A differential equation is an equation that involves the independent variable x, the dependent variable yand the derivatives of the dependent variable w.r.t. the independent triangle. For example:

IMPORTANT FORMULAE

$$\frac{2d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 = 0$$

- 2. The order of a differential equation is the order of the highest order derivative occurring in it.
- 3. The degree of a differential equation is the power of the highest order derivative occurring in the given differential equation.
- 4. Any relation between dependent and independent variables which when substituted in the differential equation reduce it to an identity is called a solution of the differential equation.
- 5. General Solution: The solution of an ordinary differential equation of nth order which contains n arbitrary constants is called the general solution of that differential equation.

- 6. If the differential equation has functions of x and y both, we have to separate each variable along with their differentials. This method is called variable separable form.
- 7. A differential equation in x and y is said to be homogeneous, if it can be put in the form $\frac{dy}{dx} = \frac{f_1(x, y)}{f_2(x, y)}$ where $f_1(x, y)$ and $f_2(x, y)$ are homogeneous functions of same degree in x and y.
- 8. An equation of the form $\frac{dy}{dx}$ + Py = Q, when P and Q are functions of x only is called a linear differential equation of first order with y as the dependent variable to be solve for such an equation.

■ Multiple Choice Questions

1. The differential equation

$$e^x \frac{dy}{dx} = 3y^3$$

can be solved using the method of (a) separating the variables

- (b) homogeneous equations
- (c) linear differential equation of first order
- (d) none of these
- 2. The differential equation

$$(x^3 + y^3) \, dy - x^2 y \, dx = 0$$

can be solved by using the method of

- (a) separating the variables
- (b) homogeneous equations
- (c) linear differential equation of first order
- (d) none of these
- 3. The differential equation

$$(1+x^2) \frac{dy}{dx} + y = e^{\tan^{-1}x}$$

can be solved by using the method of

- (a) separating the variables
- (b) homogeneous equations
- (c) linear differential equation of first order
- (d) none of these
- 4. Integrating factor of the differential equation

$$\frac{dy}{dx} + Py = Q$$

 $\frac{dy}{dx} + Py = Q$ where P and Q are functions of x_1 is:

- (a) $e^{\int P dx}$
- (b) $\int e^{P dx}$
- (c) $e^{-\int P dx}$
- (d) none of these
- 5. The differential equation corresponding to the curve $y = a \sin px + b \cos px$ is (BSEB, 2010)
 - (a) y'' + py = 0
- (b) $y'' + p^2y = 0$
- (c) $y^{\prime\prime} py = 0$
- $(\mathbf{d})\,y^{\prime\prime}+p^2y=0$
- 6. Which one of the following is the order of the differential equation (BSEB, 2011)

$$\frac{d^2y}{dx^2} + x^3 \left(\frac{dy}{dx}\right) = x^4?$$

(a) 1

(c) 3

- (d) none of these
- 7. The degree of the differential equation

$$\left(\frac{d^3y}{dx^3}\right)^2 + \frac{dy}{dx} + \cos\left(\frac{dy}{dx}\right) + 7 = 0 \text{ is}$$
(a) 2 (b) 1 (c) 3

- (d) not defined
- 8. The proper substitution to solve the differential equation

$$(x - y) dy - (x + y) dx = 0$$
 is
(b) $y = \frac{v}{x}$ (c) $y = vx^2$ (d) $y = v^2x$

- 9. The integrating factor of the differential equation

$$(1+x^2)\frac{dy}{dx} + y = e^{\tan^{-1}x} \text{ is}$$
(b) $e^{\tan^{-1}x}$

- (a) $tan^{-1} x$
- (c) $e^{-\tan^{-1}x}$
- (d) none of these
- 10. The differential equation for different values of A and B in the curve $y = A e^x + B e^{-x}$ is
 - (a) $\frac{d^2y}{dx^2} 2y = 0$
- (b) $\frac{d^2y}{dx^2} = y$
- (c) $\frac{d^2y}{dx^2} = 4y + 3$
- (d) $\frac{d^2y}{dx^2} + y = 0$

- 11. The solution of the differential equation $\frac{dy}{dx} = \frac{x}{y}$ is:
 - (a) x y = k
- (b) $x^2 v^2 = k$
- (c) $x^3 y^3 = k$
- (d) xy = k
- 12. The integrating factor of the linear differential equation $\frac{dy}{dx} + y \sec^2 x = \tan x \sec^2 x$ is:

- (b) $e^{\tan x}$
- (c) $\log \tan x$ (d) $\tan^2 x$
- 13. The degree of the differential equation $1 + \left(\frac{dy}{dx}\right)^2 =$

$$\left(\frac{d^2y}{dx^2}\right) \text{ is :} \qquad (BSEB, 2015)$$

- (a) 1
- (b) 2
- (c) 3
- (d) 4

(d) 4

14. The differential equation $\frac{d^2y}{dx^2} + x^3 \left(\frac{dy}{dx}\right)^3 = x^4$ is:

- (a) 1 (c)3
- **Ans.** 1. (a), 2. (b), 3. (c), 4. (a), 5. (b), 6. (b), 7. (d), 8. (a), 9. (b), 10. (b), 11. (b), 12. (b), 13. (a), 14. (b).
- - Q. 1. Write the degree of the differential equation:

$$x^{3} \left(\frac{d^{2}y}{dx^{2}}\right)^{2} + x \left(\frac{dy}{dx}\right)^{4} = 0 \quad (CBSE, 2013)$$

Solution:

Highest order derivative present in the differential equation = $\frac{d^2y}{d^{-2}}$

Its power = 2

- \therefore Degree of the differential equation = 2
- Q. 2. Write the degree of the differential equation:

$$x\left(\frac{d^2y}{dx^2}\right)^3 + y\left(\frac{dy}{dx}\right)^4 + x^3 = 0 (CBSE, 2013)$$

Solution:

Highest order derivative present in the differential

equation =
$$\frac{d^2y}{dx^2}$$

Its power = 3

- \therefore Degree of the differential equation = 3
- Q. 3. Write the degree of the differential equation:

$$\left(\frac{d^2s}{dt^2}\right)^2 + y\left(\frac{ds}{dt}\right)^3 + 4 = 0$$
[CBSE, 2013 (Comptt.)]

Solution:

Highest order derivative present in the differential equation = $\frac{d^2S}{dt^2}$

Its power = 2

:. Degree of the differential equation = 2

Q. 4. Write the differential equation representing the family of curve y = mx, where m is an arbitrary (AI CBSE, 2013) constant.

Solution:

The equation of the family of curve is

Differentiating (1) with respect to x, we get

$$\frac{dy}{dx} = m \qquad \dots (2)$$

Eliminating m between (1) and (2), we get

$$\frac{dy}{dx} = \frac{y}{x}$$

which is the required differential equation.

Q. 5. Verify that $y = e^x (\sin x + \cos x)$ is a solution of the differential equation

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0 (JAC, 2014)$$

Solution:

$$y = e^x \left(\sin x + \cos x \right) \tag{1}$$

$$\Rightarrow \frac{dy}{dx} = e^x (\sin x + \cos x) + e^x (\cos x - \sin x)$$

$$\Rightarrow \frac{dy}{dx} = y + e^x (\cos x - \sin x)$$
 [from (1)]

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{dy}{dx} + e^x(\cos x - \sin x) + e^x(-\sin x - \cos x)$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{dy}{dx} + e^x (\cos x - \sin x) - e^x (\sin x + \cos x)$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{dy}{dx} + \left(\frac{dy}{dx} - y\right) - y \quad \text{[from (1) and (2)]}$$

$$\Rightarrow \frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$$

Q. 6. Solve: x dx + y dy = x dy - y dx (*JAC*, 2013) **Solution:**

$$x dx + y dy = x dy - y dx$$

$$\Rightarrow \frac{x dx + y dy}{x^2 + y^2} = \frac{x dy - y dx}{x^2 + y^2}$$

$$\Rightarrow \frac{1}{2} \left(\frac{2x dx + 2y dy}{x^2 + y^2} \right) = \frac{d(y/x)}{1 + (y/x)^2}$$

$$\Rightarrow \frac{1}{2} d \log (x^2 + y^2) = d \left\{ \tan^{-1} \left(\frac{y}{x} \right) \right\}$$

Integration yields

$$\frac{1}{2}(x^2 + y^2) = \tan^{-1}\left(\frac{y}{x}\right) + C,$$

where C is an arbitrary constant of integration.

Q. 7. Solve: y dx - x dy = xy dx

Solution: y dx - x dy = xy dx

$$\Rightarrow \frac{1}{x}dx - \frac{1}{y}dy = dx$$

Integration yields

$$\log x - \log y = x + \log C$$

where log C is an arbitrary constant of integration

$$\Rightarrow \log\left(\frac{x}{Cy}\right) = x$$

 $x = Cy e^x$, which is the required solution.

Q. 8. Find the general solution of differential equation

$$\frac{dy}{dx} + y = 1 \ (y \ne 1)$$
 (BSER, 2014)

Solution:

$$\frac{dy}{dx} + y = 1$$

$$\frac{dy}{dx} = 1 - y$$

$$\Rightarrow \frac{dy}{1-y} = dx \text{ (separating the variables)}$$

Integration yields

$$-\log(1-y) = x + \log C$$

where log C is an arbitrary constant of integration

$$\Rightarrow \log c + \log (1 - y) = -x$$

$$\Rightarrow \log \{c (1-y)\} = -x$$

$$\Rightarrow c(1-y) = -e^{-x}$$

$$\Rightarrow 1 - y = \frac{1}{c}e^{-x}$$

$$\Rightarrow \qquad 1 - y = c_1 e^{-x}$$

$$1-y = \frac{1}{c}e^{-x}$$

$$1-y = c_1 e^{-x}$$

$$1-y = c_1 e^{-x} \text{ where}$$

$$c_x = \frac{1}{c}$$

Q. 9. Write the degree of the differential equation:

$$\left(\frac{dy}{dx}\right)^4 3x \frac{d^2y}{dx^2} = 0 \qquad (CBSE, 2013)$$

Solution:

Highest order derivative present in the differential

equation =
$$\frac{d^2y}{dx^2}$$

Its power = 1

:. Degree of the differential equation = 1

Q. 10. Write down the order and degree of the equation:

$$8x^2 \frac{d^2y}{dx^2} - 7\left(\frac{dy}{dx}\right)^2 + 9 = 0$$
 (BSEB, 2014)

Solution:

Highest derivative present in the differential equation $= \frac{d^2y}{dx^2}$

$$dx^2$$
It order = 2

Its power = 1

.. Order and degree of the given differential equation are 2 and 1 respectively.

Q. 11. Write true or false :

The integrating factor of the equation $\frac{dy}{dx} + 2y$ $\tan x = \sin x \text{ is } \tan^2 x.$ (BSEB, 2014) Solution:

$$P = 2 \tan x$$

$$IF = e^{\int P dx}$$

$$= e^{\int 2 \tan x \, dx}$$

$$= e^{2 \log \sec x}$$

$$= e^{\log \sec^2 x}$$

$$= \sec^2 x$$

$$\neq \tan^2 x$$

Hence the given statement is false.

Short Answer Type Questions

Q. 1. Find the general solution of the differential equation:

$$\frac{dy}{dx} + \sqrt{\frac{1 - y^2}{1 - x^2}} = 0; x \neq 1$$

(BSER, 2013)

Solution:

...

$$\frac{dy}{dx} + \sqrt{\frac{1 - y^2}{1 - x^2}} = 0$$

$$\Rightarrow \frac{dy}{\sqrt{1 - y^2}} + \frac{dx}{\sqrt{1 - x^2}} = 0$$

Integration yields

 $\sin^{-1} y + \sin^{-1} x = \sin^{-1} C$, where $\sin^{-1} C$ is an arbitrary constant of integration.

$$\Rightarrow \sin^{-1}\left\{y\sqrt{1-x^2} + x\sqrt{1-y^2}\right\} = \sin^{-1} C$$

$$\Rightarrow y\sqrt{1-x^2} + x\sqrt{1-y^2} = C,$$

which is the required solution of the given differential

Q. 2. Solve the differential equation:

Solution:

ation:
$$x \frac{dy}{dx} = x + y \qquad (USEB, 2014)$$
$$x \frac{dy}{dx} = x + y$$
$$\Rightarrow \qquad \frac{dy}{dx} = 1 + \frac{y}{x}$$
$$\Rightarrow \qquad \frac{dy}{dx} - \frac{y}{x} = 1$$

 $P = -\frac{1}{n}, Q = 1$ $IF = e^{\int P dx} = e^{-\int \frac{1}{x} dx} = e^{-\log x = \frac{1}{x}}$

: Solution is

$$y\left(\frac{1}{x}\right) = \int 1.\frac{1}{x}dx + \log c,$$

where $\log c$ is an arbitrary constant of integration

$$\Rightarrow \frac{y}{x} = \log x + \log C$$

$$\Rightarrow \frac{y}{x} = \log (xc)$$

Q. 3. Find the general solution of the differential equation:

$$x\frac{dy}{dx} + 2y = x^2(x \neq 0)$$
 (USEB, 2014)

Solution:

$$x \frac{dy}{dx} + 2y = x^{2}$$

$$\Rightarrow \frac{dy}{dx} + \frac{2}{x}y = x$$

$$P = \frac{2}{x}$$

$$Q = x$$
and
$$IF = e^{\int P dx} = e^{\int 2/x} dx = e^{2\log x = x^{2}}$$

$$\therefore Solution is$$

Solution is

$$yx^{2} = \int x x^{2} dx + C$$
$$= \int x^{3} dx + C$$
$$= \frac{x^{4}}{4} + C$$

Q. 4. Find the general solution of the differential equation:

 $y dx - (x + 2y^2) dy = 0$ (USEB, 2013)

Solution:

$$\Rightarrow \frac{dx}{dy} = \frac{x + 2y^2}{y}$$

$$\Rightarrow \frac{dx}{dy} - \frac{x}{y} = 2y$$

$$P = -\frac{1}{y}, Q = 2y$$

$$IF = e^{\int P dy} = e^{-\int V dy} = \frac{1}{y}$$

: Solution is

$$x\frac{1}{y} = \int 2y\frac{1}{y}dy + C$$
$$\frac{x}{y} = 2y + C$$

Q. 5. Find the particular solution of the differential equation:

$$\frac{dy}{dx} = 1 + x + y + xy, \text{ given that}$$

y = 0 when x = 1. (AI CBSE, 2014) Solution:

$$\frac{dy}{dx} = 1 + x + y + xy$$

$$\Rightarrow \frac{dy}{dx} = (1 + x)(1 + y)$$

$$\Rightarrow \frac{dy}{1 + y} = (1 + x) dx$$
(Separating the veriables

(Separating the variables) Integration yields

where
$$\log (1 + y) = x + \frac{x^2}{2} + C$$

$$x = 1, y = 0$$

$$0 = 1 + \frac{1}{2} + C$$

$$\Rightarrow 3v + 3y^2 = y \frac{dv}{dy}$$

$$\Rightarrow \frac{dv}{dy} = \frac{3}{y}v + 3y$$

$$P = -\frac{3}{y}, Q = 3y$$

$$IF = e^{\int P dy} = e^{-\int 3/y dy} = e^{-3\log y} = \frac{1}{y^3}$$

: Solution is

$$v\frac{1}{y^3} = \int 3y \frac{1}{y^3} dy + C$$
$$= 3\int \frac{1}{y^2} dy + C$$

$$\Rightarrow \frac{x^3}{y^3} = -\frac{3}{y} + C$$

$$\Rightarrow x^3 = -3y^2 + Cy^3$$

$$\Rightarrow x^3 + 3y^2 = Cy^3$$

$$\Rightarrow \qquad x^3 + 3y^2 = Cy^3$$

Q. 11. Solve the following differential equation:

$$x\frac{dy}{dx} = y - x \tan \frac{y}{x} \quad (JAC, 2009, 14)$$

Solution:

Given:

$$x\frac{dy}{dx} = y - x \tan\left(\frac{y}{x}\right) \Rightarrow \frac{dy}{dx} = \frac{y}{x} - \tan\left(\frac{y}{x}\right) \dots (1)$$

Taking $\frac{y}{x} = v \Rightarrow y = vx$

$$\Rightarrow \frac{dy}{dx} = v.1 + x \frac{dv}{dx} \tag{2}$$

From equations (1) and (2),

$$v + x \frac{dv}{dx} \neq v - \tan v \qquad \Rightarrow x \frac{dv}{dx} = -\tan v$$

$$\Rightarrow \qquad \cot v + \frac{dx}{x} = 0$$

Integrating on both sides,

$$\Rightarrow \qquad \log \sin v + \log x = \log C$$

$$\Rightarrow$$
 $\log (\sin v.x) = \log C$

$$\Rightarrow$$
 $x \sin v = C$

$$\Rightarrow x \sin\left(\frac{y}{x}\right) = C$$

It is the required solution.

Q. 12. Solve the following differential equation :

$$(x^2-1)\frac{dy}{dx} + 2xy = \frac{2}{x^2-1}$$
 (CBSE, 2014)

olution:

$$(x^{2} - 1) \frac{dy}{dx} + 2xy = \frac{2}{x^{2} - 1}$$

$$\Rightarrow \frac{dy}{dx} + \frac{2x}{x^{2} - 1}y = \frac{2}{(x^{2} - 1)^{2}}$$

$$P = \frac{2x}{x^{2} - 1}, \ Q = \frac{2}{(x^{2} - 1)^{2}}$$

$$IF = e^{\int P dx}$$

$$= e^{\int \frac{2x}{x^2 - 1} dx}$$

$$= e^{\log(x^2 - 1)}$$

$$= x^2 - 1$$

: Solution is

$$y(x^{2}-1) = \int \frac{2}{(x^{2}-1)^{2}} (x^{2}-1) dx + C$$

$$= 2 \int \frac{1}{x^{2}-1} dx + C$$

$$= 2 \cdot \frac{1}{2} \log \frac{x-1}{x+1} + C$$

$$= \log \frac{x-1}{x+1} + C$$

Q. 13. Find the particular solution of the differential equation:

$$\frac{dy}{dx} = \frac{x(2\log x + 1)}{\sin y + y\cos y}$$

given that $y = \frac{\pi}{2}$, when x = 1. (CBSE, 2014)

Solution:
$$\frac{dy}{dx} = \frac{x(2 \log x + 1)}{\sin y + y \cos y}$$

$$\Rightarrow \left(\sin y + y \cos y\right) dy = \left(2x \log x + x\right) dx$$

Integrating, we get

$$-\cos y + y \sin y - \int 1.\sin y \, dy = \left[\log x \cdot \frac{x^2}{2} - \int \frac{1}{x} \cdot \frac{x^2}{2} \, dx \right] + \frac{x^2}{2} + C$$

$$\Rightarrow -\cos y + y \sin y + \cos y = x^2 \log x - \frac{x^2}{2} + \frac{x^2}{2} + C$$

$$\Rightarrow \qquad y \sin y = x^2 \log x + C$$

when
$$x = 1, y = \frac{\pi}{2}$$

$$\therefore \frac{\pi}{2} = 0 + C \Rightarrow C = \frac{\pi}{2}$$

$$\therefore y \sin y = x^2 \log x + \frac{\pi}{2}$$

This gives the required particular solution.

Q. 14. Find the particular solution of the differential equation:

$$x\frac{dy}{dx} - y + x \operatorname{cosec}\left(\frac{y}{x}\right) = 0;$$

given that y = 0 when x = 1

[AI CBSE, 2014 (Comptt.)]

$$x\frac{dy}{dx} - y + x \operatorname{cosec}\left(\frac{y}{x}\right) = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{y - x \operatorname{cosec}\left(\frac{y}{x}\right)}{x}$$
Put
$$y = vx$$
so that
$$\frac{dy}{dx} = v + x\frac{dv}{dx}$$

$$v + x \frac{dv}{dx} = \frac{vx - x \csc v}{x}$$

$$= v - \csc v$$

$$\Rightarrow \qquad x \frac{dv}{dx} = -\csc v$$

$$\Rightarrow \qquad \sin v \, dv = -\frac{dx}{x}$$
Integration yields
$$-\cos v = -\log x - C$$

$$\Rightarrow \frac{-\cos v = -\log x - C}{\cos v = \log x + C}$$

$$\Rightarrow \frac{\cos \left(\frac{y}{x}\right) = \log x + C}{\sin x = 1, y = 0}$$
when $x = 1, y = 0$

$$1 = 0 + C \Rightarrow C = 1$$

$$\cos\left(\frac{y}{x}\right) = \log x + 1$$
Q. 15. Solve the following differential equation:

$$x\cos\left(\frac{y}{x}\right)\frac{dy}{dx} = y\cos\left(\frac{y}{x}\right) + x; x \neq 0.$$

[AI CBSE, 2014 (Comptt.)]

Solution:

Foliation:
$$x \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) + x$$

$$\Rightarrow \frac{dy}{dx} = \frac{y \cos\left(\frac{y}{x}\right) + x}{x \cos\left(\frac{y}{x}\right)}$$
Put
$$y = vx$$
so that
$$\frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$v + x \frac{dv}{dx} = \frac{vx \cos v + x}{x \cos v}$$

$$= \frac{v \cos v + 1}{\cos v}$$

$$= vx \sec v$$

$$\Rightarrow \frac{dv}{dx} = \sec v$$

$$\Rightarrow \cos v \, dv = \frac{dx}{x}$$
Integration yields
$$\sin v = \log x + C$$

$$\Rightarrow \qquad \sin \frac{y}{x} = \log x + C$$

Q. 16. Find the particular solution of the differential equation

$$\frac{dy}{dx} - \frac{y}{x} + \csc\left(\frac{y}{x}\right) = 0; \text{ given that}$$

(BSEB, 2014)

Solution:

Put
$$\frac{dy}{dx} - \frac{y}{x} + \csc\left(\frac{y}{x}\right) = 0$$
$$y = vx$$
$$\frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$\therefore \quad vx \frac{dv}{dx} - v + \csc v = 0$$

$$\Rightarrow \qquad x\frac{dv}{dx} + \frac{1}{\sin v} = 0$$

$$\Rightarrow \qquad \sin v \, dx + \frac{dx}{x} = 0$$

Integration yields

$$-\cos v + \log x = \log C$$

$$\log x - \log C = \cos v$$

$$\Rightarrow \qquad \log\left(\frac{y}{C}\right) = \cos\left(\frac{y}{x}\right)$$

$$\Rightarrow \frac{x}{C} = e^{\cos\left(\frac{y}{x}\right)}$$

$$\Rightarrow \qquad x = C e^{\cos\left(\frac{y}{x}\right)}$$

when x = 1, y = 0

$$1 = C e' \Rightarrow C = \frac{1}{e}$$

$$x = \frac{1}{e} e^{\cos(\frac{y}{x})}$$

This gives the required particular solution.

Q. 17. Find a particular solution of the differential equation:

 $(1+x^2) dy + 2xy dx = \cot x dx,$

given that
$$y = 0$$
 if $x = \frac{\pi}{2}$. (BSER, 2013)

 $(1+x^2)\,dy + 2xy\,dx = \cot x\,dx$

$$\Rightarrow \frac{dy}{dx} + \frac{2x}{1+x^2}y = \frac{\cot x}{1+x^2}$$

$$P = \frac{2x}{1+x^2}$$

$$Q = \frac{\cot x}{1+x^2}$$

and

$$IF = e^{\int P dx}$$

$$= e^{\int \frac{2x}{1+x^2} dx}$$

$$= e^{\log(1+x^2)}$$

$$= e^{\log(1+x)}$$

= 1 + x^2

: Solution in

$$y (1 + x^2) = \int \frac{\cot x}{1 + x^2} (1 + x^2) dx + C$$
$$= \int \cot x dx + C$$
$$= \log \sin x + C$$

when $x = \frac{\pi}{2}$, y = 0

$$0 = 0 + C \Rightarrow C = 0$$

$$v(1 + r^2) = \log \sin u$$

 $y(1+x^2) = \log \sin x$

This gives the required particular solution Q. 18. Solve the differential equation:

 $(1+x^2)\frac{dy}{dx} + y = e^{\tan^{-1}x}$ (AI CBSE, 2014)

$$(1+x^2)\frac{dy}{dx} + y = e^{\tan^{-1}x}$$

$$\frac{dy}{dx} + \frac{y}{1+x^2} = \frac{e^{\tan^{-1}x}}{1+x^2}$$

$$P = \frac{1}{1+x^2}, Q = \frac{e^{\tan^{-1}x}}{1+x^2}$$

$$IF = e^{\int P dx} = e^{\int \frac{1}{1+x^2} dx} = e^{\tan^{-1}x}$$

Solution is

$$y e^{\tan^{-1}x} = \int e^{\tan^{-1}x} \frac{e^{\tan^{-1}x}}{1+x^2} dx + C$$
Put
$$e^{\tan^{-1}x} = t$$
then
$$\frac{e^{\tan^{-1}x}}{1+x^2} dx = dt$$

$$= \int t dt + C$$

$$= \frac{t^2}{2} + C$$

$$= \left(\frac{e^{\tan^{-1}x}}{2}\right)^2 + C$$

$$\Rightarrow y = \frac{1}{2}e^{\tan^{-1}x} + C e^{-\tan^{-1}x}$$

Q. 19. Find the particular solution of the differential equation $x(1+y^2) dx - y(1+x^2) dy = 0$, given that y = 1 when x = 0. (AI CBSE, 2014) Solution:

$$x (1 + y^{2}) dx - y (1 + x^{2}) dy = 0$$

$$\Rightarrow \frac{x dx}{1 + x^{2}} = \frac{y dx}{1 + y^{2}}$$

$$\Rightarrow \frac{2x dx}{1 + x^{2}} = \frac{2y dy}{1 + y^{2}}$$
Integration : 11

Integration yields

$$\log (1 + x^2) = \log (1 + y^2) + C$$

when
$$x = 0$$
, $y = 1$

$$\therefore 0 = \log 2 + C \Rightarrow C = -\log 2$$

$$\Rightarrow \log \frac{1+y^2}{1-\log x} = \log x$$

$$\Rightarrow \qquad \log \frac{1+y^2}{1+x^2} = \log 2$$

$$\Rightarrow \frac{1+y^2}{1+x^2} = 2$$

$$y - 2x^2 - 1 = 0$$
The required particular solution

This gives the required particular solution.

Q. 20. Find the particular solution of the ferential equation :

$$\sqrt{1-y^2} dx + \frac{y}{x} dy = 0$$
, given that $y = 1$ when $x = 0$.

(CBSE, 2014)

ution :

$$e^{x} \sqrt{1 - y^{2}} dx + \frac{y}{x} dy = 0$$
$$x e^{x} dx + \frac{y}{\sqrt{1 - y^{2}}} dy = 0$$

Integration yields

$$x e^{x} - \int e^{x} dx - \frac{1}{2} \int \frac{-2y}{\sqrt{1 - y^{2}}} dy = 0$$

Put
$$1 - y^2 = t^2$$

$$\Rightarrow -2y \, dy = 2t \, dt$$

$$\Rightarrow \qquad x e^x - e^x - \frac{1}{2} \int \frac{2t \ dt}{t} = C$$

$$\Rightarrow \qquad x e^x - e^x - t = C$$

$$\Rightarrow x e^x - e^x - \sqrt{1 - y^2} = C$$

when
$$x = 0$$
, $y = 1$

$$\therefore 0 - 1 - 0 = C \Rightarrow C = -1$$

$$\therefore \qquad x e^{x} - e^{x} - \sqrt{1 - y^{2}} = -1$$

$$\Rightarrow \qquad \sqrt{1 - y^{2}} = x e^{x} - e^{x} + 1$$

This gives the required particular solution.

Q. 21. Solve the following differentiate equation:

$$\csc x \log y \frac{dy}{dx} + x^2 y^2 = 0 (CBSE, 20 4)$$

Solution:

$$\csc x \log y \frac{dy}{dx} + x^2 y^2 = 0$$

$$\Rightarrow \frac{\log y}{y^2} dy + x^2 \sin x dx = 0$$
Integration yields

Integration yields

$$\int \log y \cdot \frac{1}{y^2} dy + \int x^2 \sin x \, dx = C$$

$$\Rightarrow \log y \left(\frac{-1}{y} \right) - \int \frac{1}{y} \left(-\frac{1}{y} \right) dy + x^2 (-\cos x)$$

$$- \int 2x (-\cos x) \, dx = C$$

$$\Rightarrow \frac{-\frac{\log y}{y} - \frac{1}{y} - x^2 \cos x + 2 \int_{1}^{x} \cos x \, dx = C}{\Rightarrow -\frac{\log y}{y} - \frac{1}{y} - x^2 \cos x + 2 \int_{1}^{x} \sin x \, dx} = C$$

$$\Rightarrow -\frac{\log y}{y} - \frac{1}{y} - x^2 \cos x + 2 \left[x \sin x - \int 1 \cdot \sin x \, dx \right] = C$$

$$\Rightarrow \frac{-\log y}{y} - \frac{1}{y} - x^2 \cos x + 2x \sin x + 2\cos x = C$$

$$\frac{1 + \log y}{y} = \frac{1}{y} - x^2 \cos x + 2x \sin x + 2\cos x = C$$

$$\Rightarrow \frac{1 + \log y}{y} = x^2 \cos x - 2 (x \sin x + \cos x) + C$$

$$Q. 1. Solve the differential$$

Q. 1. Solve the differential equation:

(x-y) dy - (x+y) dx = 0 (USEB, 2013)

$$(x-y) dy - (x+y) dx = 0$$

$$\frac{dy}{dx} = \frac{x+y}{x-y}$$
Put
$$y = vx$$

$$\therefore \qquad \frac{dy}{dx} = v + x \, \frac{dv}{dx}$$

$$v + x \frac{dv}{dx} = \frac{x + vx}{x - vx} = \frac{1 + v}{1 - v}$$

$$\Rightarrow \qquad x \frac{dv}{dx} = \frac{1+v}{1-v} - v$$

$$= \frac{1+v-v+v^2}{1-v}$$

$$= \frac{1+v^2}{1-v}$$

$$\Rightarrow \qquad \frac{1-v}{1-v^2} dv = \frac{dx}{x}$$

$$\Rightarrow \qquad \left(\frac{1}{1+v^2} - \frac{v}{1+v^2}\right) dv = \frac{dx}{x}$$

$$\Rightarrow \qquad \left(\frac{1}{1+v^2} - \frac{1}{2} \frac{2v}{1+v^2}\right) dv = \frac{dx}{x}$$
Integration yields

$$\tan^{-1} v - \frac{1}{2} \log (1 + v^2) = \log x + \log C$$

$$\Rightarrow \tan^{-1} \frac{y}{x} - \frac{1}{2} \log \left(1 + \frac{y^2}{x^2} \right) = \log x + \log C$$

$$\Rightarrow \tan^{-1} \frac{y}{x} - \frac{1}{2} \log (x^2 + y^2) + \log x = \log x + \log C$$

$$\Rightarrow \tan^{-1} \frac{y}{x} = \frac{1}{2} \log (x^2 + y^2) + \log C$$

$$\Rightarrow \tan^{-1} \frac{y}{x} = \log \left\{ C\sqrt{x^2 + y^2} \right\}$$

$$\Rightarrow C\sqrt{x^2 + y^2} = e^{\tan^{-1} \frac{y}{x}}$$

Q. 2. Show that the differential equation

 $2y \ e^{x/y} \ dx + (y - 2x \ e^{x/y}) \ dy = 0$ is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1. (CBSE, 2013) Solution:

$$2y e^{x/y} dx + (y - 2x e^{x/y}) dy = 0 \qquad \dots (1)$$

$$\Rightarrow \frac{dy}{dx} = \frac{2x e^{x/y} - y}{2y e^{x/y}} = f(x, y) \text{ say}$$
then
$$f(\lambda x, \lambda y) = \frac{2\lambda x e^{\frac{\lambda x}{\lambda y}} - \lambda y}{2\lambda y e^{\frac{\lambda x}{\lambda y}}}$$

$$= \frac{2x e^{\frac{x}{y}} - y}{2y e^{\frac{x}{y}}} = f(x, y)$$

∴ (1) is homogenous.

Put

$$x = vy$$

So that

$$\frac{dx}{dy} = v + y \frac{dv}{dy}$$

then (1) reduces to

$$v + y \frac{dv}{dy} = \frac{2vy e^{vy/y} - y}{2y e^{vy/y}}$$
$$= \frac{2ve^{v} - 1}{2e^{v}}$$
$$= v - \frac{1}{2e^{v}}$$

$$\Rightarrow \qquad \qquad y \frac{dv}{dy} = -\frac{1}{2e^{v}}$$

$$\Rightarrow \qquad \qquad 2 e^{v} dv = -\frac{dy}{y}$$

Integration yields

$$2e^{y} = -\log y + C$$
$$2e^{x/y} = -\log y + C$$

when y = 1, x = 0

$$2 = 0 + C \Rightarrow C = 2$$

$$\therefore \qquad 2e^{x/y} = -\log y + 2$$

$$\Rightarrow$$
 $2e^{x/y} + \log y = 2$

This gives the required particular solution.

Q. 3. Show that the differential equation $(x e^{y/x} + y) dx = x dy$ is homogeneous. Find the particular solution of this differential equation, given that x = 1 when y = 1. (CBSE, 2013)

Solution:

Let
$$(x e^{y/x} + y) dx = x dy \qquad ...(1)$$

$$\Rightarrow \frac{dy}{dx} = \frac{x e^{y/x} + y}{x}$$
Let
$$f(x, y) = \frac{x e^{y/x} + y}{x},$$
then
$$f(\lambda x, \lambda y) = \frac{\lambda x e^{\frac{\lambda y}{\lambda x}} + \lambda y}{\lambda x}$$

$$= \frac{x e^{y/x} + y}{x}$$

$$= f(x, y)$$

 \therefore (1) is homogeneous.

Put

$$y = vx$$

so that

$$\frac{dy}{dx} = v + x \frac{dv}{dx}$$

: (1) reduces to

$$v + x \frac{dv}{dx} = \frac{xe^{vx/x} + vx}{x}$$
$$dv$$

$$\Rightarrow \qquad v + x \, \frac{dv}{dx} = e^v + v$$

$$\Rightarrow \qquad x \frac{dv}{dx} = e^v$$

$$\Rightarrow \qquad e^{-v} \, dv = \frac{dx}{x}$$

Integration yields

$$-e^{-v} = \log x + C$$

$$\Rightarrow$$
 $-e^{-y/x} = \log x + C$

when x = 1, y = 1

$$\begin{array}{ccc} & & & & -e^{-1} = \log 1 + \mathrm{C} \\ \Rightarrow & & & -e^{-1} = 0 + \mathrm{C} \end{array}$$

$$\begin{array}{ccc}
 & -e & -o & +c \\
 &$$

$$\Rightarrow \qquad e^{-1} - e^{-y/x} = \log x$$

This gives the required particular solution.

Q. 4. Show that the differential equation:

$$x\frac{dy}{dx}\sin\left(\frac{y}{x}\right)+x-y\sin\left(\frac{y}{x}\right)=0 \text{ is homogeneous.}$$
 Find the particular solution of this differential equation, given that $x=1$ when $y=\frac{\pi}{2}$. (CBSE, 2013) Solution:

$$x\frac{dy}{dx}\sin\left(\frac{y}{x}\right) + x - y\sin\left(\frac{y}{x}\right) = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{y\sin\left(\frac{y}{x}\right) - x}{x\sin\left(\frac{y}{x}\right)} = f(x, y) \text{ say} \qquad \dots(1)$$

then
$$f(\lambda x_1, \lambda y) = \frac{\lambda y \sin\left(\frac{\lambda y}{\lambda x}\right) - \lambda x}{\lambda x \sin\left(\frac{\lambda y}{\lambda x}\right)}$$

$$= \frac{y \sin\left(\frac{y}{x}\right) - x}{x \sin\left(\frac{y}{x}\right)}$$

$$= f(x, y)$$

 \therefore (1) is homogeneous.

Put
$$y = vx$$

then $\frac{dy}{dx} = v + x \frac{dv}{dx}$
 $v + x \frac{dv}{dx} = \frac{vx \sin v - x}{x \sin v}$
 $= \frac{v \sin v - 1}{\sin v}$
 $= v - \frac{1}{\sin v}$
 $\Rightarrow x \frac{dv}{dx} = -\frac{1}{\sin v}$
 $\Rightarrow -\sin v \, dv = \frac{dx}{x}$

Integration yields
$$\cos v = \log x + C$$

$$\Rightarrow \qquad \cos \frac{y}{x} = \log x + C$$

$$x = 1 \text{ when } y = \frac{\pi}{2}$$

$$\therefore \qquad \cos \frac{\pi}{2} = \log 1 + C$$

$$\Rightarrow \qquad 0 = 0 + C \Rightarrow C = 0$$

$$\therefore \qquad \cos \frac{y}{x} = \log x$$

This gives the required particular solution.

Q. 5. Find the particular solution of the differen-

 $(\tan^{-1} y - x) dy = (1 + y^2) dx$, given that when x = 0. v = 0. (AI CBSE, 2013)

Solution:

$$(\tan^{-1} y - x) dy = (1 + y^{2}) dx$$

$$\frac{dx}{dy} = \frac{\tan^{-1} y - x}{1 + y^{2}}$$

$$\Rightarrow \frac{dx}{dy} + \frac{x}{1 + y^{2}} = \frac{\tan^{-1} x}{1 + y^{2}}$$

$$P = \frac{1}{1 + y^{2}}, Q = \frac{\tan^{-1} y}{1 + y^{2}}$$

$$IF = e^{\int P dy} = e^{\int \frac{1}{1 + y^{2}} dy} = e^{\tan^{-1} y}$$

$$\therefore \text{ Solution is}$$

$$x e^{\tan^{-1} y} = \int e^{\tan^{-1} y} \frac{\tan^{-1} y}{1 + y^{2}} dy + C$$

$$\tan^{-1} y = t$$

$$\frac{1}{1 + y^{2}} dy = dt$$

$$= \int e^{t} t dt + C$$

$$= t e^{t} - \int 1 \cdot e^{t} dt + C$$

$$= t e^{t} - e^{t} + C$$

$$= t e^{t} - e^{t} + C$$

$$= t an^{-1} y e^{\tan^{-1} y} - e^{\tan^{-1} y} + C$$

$$\Rightarrow x = \tan^{-1} y - 1 + C e^{-\tan^{-1} y}$$

$$\Rightarrow x - \tan^{-1} y + 1 = e^{-\tan^{-1} y}$$

This gives the required particular solution.

 $(x - \tan^{-1} y + 1) e^{\tan^{-1} y} = 1$

Q. 6. Show that the differential equation

$$\left[x\sin^2\left(\frac{y}{x}\right)-y\right]dx+x\ dy=0 \text{ is homogeneous.}$$

Find the particular solution of this differential equation, given that $y = \frac{\pi}{4}$ when x = 1.

(AI CBSE, 2013)

$$\begin{bmatrix} x \sin^2\left(\frac{y}{x}\right) - y \end{bmatrix} dx + x \, dy = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{y - x \sin^2\left(\frac{y}{x}\right)}{x}$$
Put
$$y = vx$$

$$\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$v + x \frac{dv}{dx} = \frac{vx - x \sin^2 v}{x}$$

$$= v - \sin^2 v$$

$$\Rightarrow \frac{dv}{dx} = -\sin^2 x$$

$$\Rightarrow \int \csc^{2}v \, dv = -\int \frac{dx}{x} + \log C$$

$$\Rightarrow -\cot v = -\log x + \log C$$

$$\Rightarrow \cot \left(\frac{y}{x}\right) = -\log x - \log C$$

$$\Rightarrow \cot \left(\frac{y}{x}\right) = \log x - \log C$$

$$\Rightarrow \cot \left(\frac{y}{x}\right) = \log \left(\frac{y}{C}\right)$$

$$\Rightarrow \cot \left(\frac{z}{x}\right) = \log \left(\frac{z}{C}\right)$$

$$\Rightarrow \cot \left(\frac{z}{C}\right) = \log$$

This gives the required particular solution.

Q. 7. Find the particular solution of the differential equation: ..

$$(x-y)\frac{dy}{dx} = x+2y$$
, given that when $x = 1$, $y = 0$.
[CBSE, 2013, 14 (Comptt.)]

Solution:

$$(x-y)\frac{dy}{dx} = x + 2y$$

$$\Rightarrow \frac{dy}{dx} = \frac{x+2y}{x-y}$$
Put
$$y = vx$$

$$\therefore \frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$v + x \frac{dv}{dx} = \frac{x+2vx}{x-vx} = \frac{1+2v}{1-v}$$

$$\Rightarrow \frac{dv}{dx} = \frac{1+2v}{1-v} - v$$

$$= \frac{1+2v-v+v^2}{1-v}$$

$$= \frac{1+v+v^2}{1-v}$$

$$\Rightarrow \frac{1-v}{1+v+v^2} dv = \frac{dx}{x}$$

$$\Rightarrow \frac{v-1}{v^2+v+1} dv = -\frac{dx}{x}$$

$$\Rightarrow \frac{2v-2}{v^2+v+1} dv = -\frac{2}{x} dx$$

$$\Rightarrow \frac{(2v+1)-3}{v^2+v+1} dv = -\frac{2}{x} dx$$

$$\Rightarrow \left[\frac{2v+1}{v^2+v+1} - \frac{3}{\left(v+\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} \right] dv$$

$$= -\frac{2}{x} dx$$
Integration of the

Integration yields

$$\log (v^{2} + v + 1) - 3 \cdot \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{4 + \frac{1}{2}}{2\sqrt{3}}\right)$$

$$= -2 \log x + \log C$$

$$\Rightarrow \log \left(\frac{y^{2}}{x^{2}} + \frac{y}{x} + 1\right) - 2\sqrt{3} \tan^{-1} \left(\frac{2y + x}{\sqrt{3}x}\right)$$

$$= 2 \log x + \log C$$

$$\Rightarrow \log (y^{2} + xy + x^{2}) - 2 \log x - 2\sqrt{3} \tan^{-1} \left(\frac{2y + x}{\sqrt{3}x}\right)$$

$$= 2 \log x + \log C$$

$$\Rightarrow \log \left(\frac{x^{2} + xy + y^{2}}{C}\right) = 2\sqrt{3} \tan^{-1} \left(\frac{2y + x}{\sqrt{3}x}\right)$$

$$\Rightarrow \qquad x^{2} + xy + y^{2} = e^{2\sqrt{3} \tan^{-1} \left(\frac{2y + x}{\sqrt{3}x}\right)}$$

$$\Rightarrow \qquad x^{2} + xy + y^{2} = e^{2\sqrt{3} \tan^{-1} \left(\frac{2y + x}{\sqrt{3}x}\right)}$$

$$\Rightarrow \qquad 1 = C e^{2\sqrt{3} \tan^{-1} \left(\frac{1}{\sqrt{3}}\right)} \Rightarrow 1 = C e^{2\sqrt{3} \tan^{-1} \left(\frac{2y + x}{\sqrt{3}x}\right)}$$

$$\therefore \qquad x^{2} + xy + y^{2} = e^{2\sqrt{3} \tan^{-1} \left(\frac{2y + x}{\sqrt{3}x}\right) \frac{\pi}{\sqrt{3}}}$$

This gives the required particular mention

Q. 8. Find the particular solution of the differential equation

$$\frac{dy}{dx} + y \cot x = 2x + x^2 \cot x (x \neq 0), \text{ given that}$$

$$y = 0, \text{ when } x = \frac{\pi}{2}.$$
Solution:
$$(BSER, 2014)$$

and

$$\frac{dy}{dx} + y \cot x = 2x + x^2 \cot x$$

$$P = \cot x$$

$$Q = 2x + x^2 \cot x$$

$$IF = e^{\int \cot x \, dx}$$

$$= e^{\int \cot x \, dx}$$

$$= e^{\log \sin x}$$

$$= \sin x$$

Solution is

$$y \sin x = \int (2x + x^2 \cot x) \sin x \, dx + C$$

$$= 2 \int x \sin x \, dx + \int_{1}^{x^2} \cos x \, dx + C$$

$$= 2 \int x \sin x \, dx + x^2 \sin x - \int 2x \sin x \, dx + C$$

$$= x^2 \sin x + C$$
when
$$x = \frac{\pi}{2}, y = 0$$

$$0 = \left(\frac{\pi}{2}\right)^2 - \sin \frac{\pi}{2} \Rightarrow C = -\frac{\pi^2}{4}$$

$$x \sin x = x^2 \sin x = \frac{\pi^2}{4}$$

$$y\sin x = x^2\sin x - \frac{\pi^2}{4}$$

Q. 9. Find the particular solution of the differential equation:

$$\frac{dy}{dx} + x \cot y = 2y + y^2 \cot y, (y \neq 0)$$

given that x = 0 when $y = \frac{\pi}{2}$. $(AI\ CBSE,\ 2013)$

Solution:

$$\frac{dy}{dx} + x \cot y = 2y + y^2 \cot y$$

$$y = \cot y \text{ and } Q = 2y + y^2 \cot y$$

$$P = \cot y$$
 and $Q = 2y + y^2 \cot y$

$$IF = e^{\int P dy} = e^{\int \cot y \, dy} = e^{\log \sin y} = \sin y$$

: Solution is

$$x \sin y = \int (2y + y^2 \cot y) \sin y + C$$

$$= 2y \int \sin y \, dy + 2 \int_{1}^{y^2} \sin y \, dy + C$$

$$= 2 \int y \sin y \, dy + y^2 \sin y - \int 2y \sin y \, dy + C$$

$$= y^2 \sin y + C$$

$$\pi$$

when

$$y = \frac{\pi}{2}, x = 0$$

$$0 = \left(\frac{\pi}{2}\right)^2 \cdot 1 + C \Rightarrow C = -\frac{\pi^2}{4}$$

$$x \sin y = y^2 \sin y - \frac{\pi^2}{4}$$

This gives the required particular solution.

Q. 10. Find the particular solution of the differential equation :

$$x \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) + x$$
, given that when $x = y = \frac{\pi}{4}$.

[CBSE, 2013 (Comptt.)]

Solution:

$$x \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) + x$$

$$\Rightarrow \frac{dy}{dx} = \left(\frac{y}{x}\right) + x \sec\left(\frac{y}{x}\right)$$
Put
$$y = vx$$
so that
$$\frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$v + x \frac{dv}{dx} = v + x \sec v$$

$$\Rightarrow \frac{dv}{dx} = \sec v$$

$$\Rightarrow \cos v \, dv = \frac{dx}{x}$$
Integration yields
$$\sin v = \log x + \log C$$

$$\Rightarrow \sin \frac{y}{x} = \log x + \log C$$
when
$$x = 1, y = \frac{\pi}{4}$$

$$\sin \frac{\pi}{4} = \log 1 + \log C$$

$$\Rightarrow \frac{1}{\sqrt{2}} = 0 + \log C$$

$$\Rightarrow \frac{1}{\sqrt{2}} = \log C$$

$$\therefore \sin \frac{y}{x} = \log x + \frac{1}{\sqrt{2}}$$
This gives the required

This gives the required particular solution.

Q. 11. Solve the following differential equation:

$$x \cos\left(\frac{y}{x}\right) (y \, dx + x \, dy) = y \sin\left(\frac{y}{x}\right) (x \, dy - y \, dx)$$
[CBSE, 2013 (Comptt.)]

Solution:

$$x \cos\left(\frac{y}{x}\right) (y \, dx + x \, dy) = y \sin\left(\frac{y}{x}\right) (x \, dy - y \, dx)$$

$$\Rightarrow x \cos\left(\frac{y}{x}\right) \left(y + x \frac{dy}{dx}\right) = y \sin\left(\frac{y}{x}\right) \left(x \frac{dy}{dx} - y\right)$$

$$\Rightarrow \frac{dy}{dx} \left\{x \left(y \sin\frac{y}{x} - x \cos\frac{y}{x}\right)\right\} = y \left\{x \cos\frac{y}{x} + y \sin\frac{y}{x}\right\}$$

$$\Rightarrow \frac{dy}{dx} = \frac{y \left\{x \cos\frac{y}{x} + y \sin\frac{y}{x}\right\}}{x \left\{y \sin\frac{y}{x} - x \cos\frac{y}{x}\right\}}$$
Put $y = yx$

Put
$$y = vx$$

so that
$$\frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$v + x \frac{dv}{dx} = \frac{v(x \cos v + vx \sin v)}{(vx \sin v - x \cos v)}$$

$$= \frac{v(\cos v + v \sin v)}{v \sin v - \cos v}$$

$$\Rightarrow x \frac{dv}{dx} = v \left[\frac{\cos v + v \sin v}{v \sin v} - 1 \right]$$

$$\Rightarrow x \frac{dv}{dx} = v \left[\frac{\cos v + v \sin v}{v \sin v - \cos v} - 1 \right]$$

$$= v \left[\frac{2 \cos v}{v \sin v - \cos v} \right]$$

$$\Rightarrow \frac{v \sin v - \cos v}{v \cos v} dv = 2 \frac{dx}{x}$$

$$\Rightarrow \left(\tan v - \frac{1}{v} \right) dv = 2 \frac{dx}{x}$$

$$\Rightarrow -\log \cos v - \log v = 2 \log x - \log C$$

$$\Rightarrow -\log \cos v - \log v = 2 \log x - \log C$$

$$\Rightarrow \log \cos v + \log v = -2 \log x + \log C$$

$$\Rightarrow \log (v \cos v) + 2 \log x = \log C$$

$$\Rightarrow \frac{\log (v \cos v) + 2 \log x}{\log (v \cos v x^2)} = \log C$$

$$\Rightarrow \frac{y}{\log (y \cos v x^2)} = \log C$$

$$\Rightarrow \log \left\{ \frac{y}{x} \cos \left(\frac{y}{x} \right) x^2 \right\} = \log C$$

$$\Rightarrow \log \left\{ xy \cos \left(\frac{y}{x} \right) \right\}$$

$$\Rightarrow \log \left\{ xy \cos \left(\frac{y}{x} \right) \right\} = \log C$$

$$\Rightarrow xy \cos \left(\frac{y}{x} \right) = C$$

Q. 12. Solve the differential equation:

Solution:
$$(x-y) dy - (x+y) dx = 0$$
 (BSEB, 2015)

$$(x-y) dy - (x+y) dx = 0$$

$$\Rightarrow \qquad \frac{dy}{dx} = \frac{x+y}{x-y}$$

Let
$$y = vx$$

$$\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$v + x \frac{dv}{dx} = \frac{1+v}{1-v}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{1+v}{1-v} - v = \frac{1+v-v+v^2}{1-v} = \frac{1+v^2}{1-v}$$

$$\Rightarrow \frac{1-v}{1+v^2} dv = \frac{1}{x} dx$$

$$\Rightarrow \int \frac{1}{1+v^2} dv - \frac{1}{2} \int \frac{2v}{1+v^2} dv = \int \frac{1}{x} dx$$

$$\Rightarrow \tan^{-1} v - \frac{1}{2} \log(v^2 + 1) - \log x = C$$

$$\Rightarrow \tan^{-1} v - \frac{1}{2} \log(v^2 + 1) - \log x = C$$

Now, substituting
$$v = \frac{y}{x}$$
,

$$\Rightarrow \tan^{-1}\left(\frac{y}{x}\right) - \frac{1}{2}\log\left(\frac{y^2 + x^2}{x^2}\right) - \log x = C$$

$$\Rightarrow \tan^{-1}\left(\frac{y}{x}\right) - \log\left(\frac{\sqrt{y^2 + x^2}}{x}\right) + x = C$$

$$\Rightarrow \tan^{-1}\left(\frac{y}{x}\right) - \frac{1}{2}\log\left(y^2 + x^2\right) = C$$

Q. 13. Find the particular solution of the differential equation $\frac{dy}{dx} + y \cot x = 4 \cos x \ (x \neq 0)$ given that y = 0, when $x = \frac{\pi}{2}$ (Raj. Board, 2015) Solution:

Differential equation

$$\frac{dy}{dx} + y \cot x = 2 \cos x$$

 $\frac{dx}{dx}$ Comparing with $\frac{dy}{dx} + Py = Q$

then $P = \cot x$ and $Q = 2 \cos x$

$$\therefore \qquad \text{If } = e^{\int P \, dx} = e^{\int \cot x \, dx} = e^{\log \sin x}$$
$$= \sin x$$

Thus, general solution

$$y \sin x = \int 2 \sin x \cos x \, dx + C$$

$$\Rightarrow y \sin x = \int \sin 2x \, dx + C$$

$$\Rightarrow y \sin x = -\frac{\cos 2x}{2} + C \qquad \dots(1)$$

since given that y = 0, when $x = \frac{\pi}{2}$

thus
$$x = \frac{\pi}{2}$$
 and $y = 0$ putting in eq. (1)

$$0 \cdot \sin \frac{\pi}{2} = \frac{\cos 2 \times \pi/2}{2} + C$$

$$\Rightarrow C - \frac{\cos \pi}{2} = 0$$

$$\Rightarrow C + \frac{1}{2} = 0$$

$$\Rightarrow C = -\frac{1}{2}$$

Hence, particular solution is

$$y \sin x = -\frac{\cos 2x}{2} - \frac{1}{2}$$

$$\Rightarrow 2y \sin x + \cos 2x + 1 = 0$$
Q. 14. Solve : $(1 + x^2) \frac{dy}{dx} + 2xy + \sqrt{x^2 + 4}$
(JAC, 2015)

Solution:

Differential equation

$$(1+x)^2 \frac{dy}{dx} + 2xy = \sqrt{x^2 + 4}$$
dividing by $(x^2 + 1)$

$$\frac{dy}{dx} + \frac{2xy}{1+x^2} = \frac{\sqrt{x^2 + 4}}{1+x^2} \qquad ...(1)$$

Comparing equation (1) with $\frac{dy}{dx} + Py = Q$

$$P = \frac{2x}{x^2 + 1} \text{ and } Q = \frac{\sqrt{x^2 + 4}}{1 + x^2}$$

$$\therefore \text{ If } = e^{\int \frac{2x}{x^2 + 1} dx} = e^{\log(x^2 + 1)}$$

$$= x^2 + 1$$

Hence, general solution

$$y(x^{2} + 1) = \int (x^{2} + 1) \cdot \frac{\sqrt{x^{2} + 4}}{x^{2} + 1} dx$$

$$\Rightarrow y(x^{2} + 1) = \int \sqrt{x^{2} + 4} dx$$

$$\Rightarrow y(x^{2} + 1) = \frac{x}{2} \sqrt{x^{2} + 2^{2}} + \frac{2^{2}}{2} \log(x + \sqrt{x^{2} + 2^{2}}) + C$$

$$\Rightarrow y(x^{2} + 1) = \frac{x}{2} \sqrt{x^{2} + 4} + 2 \log(x + \sqrt{x^{2} + 4}) + C$$

$$Q. 15. Solve: (x^{3} + y^{3}) dy - x^{2}y dx = 0$$
(JAC, 2015)

Solution:

Differential equation

$$(x^{3} + y^{3}) \frac{dy}{dy} - x^{2}y dx = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{x^{2}y}{x^{3} + y^{3}}$$
Let
$$y = vx \Rightarrow dy = v + x \frac{dv}{dx}$$

$$v + x \frac{dv}{dx} = \frac{vx^{3}}{x^{3} + v^{3}x^{3}}$$

$$\Rightarrow v + x \frac{dv}{dx} = \frac{v}{1 + v^3}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{v}{1 + v^3} - v$$

$$\Rightarrow x \frac{dv}{dx} = \frac{v - v - v^4}{1 + v^3} = -\frac{v^4}{1 + v^3}$$

$$\Rightarrow x (1 + v^3) dv = -v^4 dv$$

$$\Rightarrow \frac{1 + v^3}{v^4} dv = \frac{-dx}{x}$$

$$\Rightarrow \left(\frac{1}{v^4} + \frac{1}{v}\right) dv = \frac{-dx}{x}$$

Integrating both sides

$$\frac{v^{-3}}{-3} + \log v = -\log x + C$$

$$\Rightarrow -\frac{1}{3v^3} + \log v + \log x = C$$

$$\Rightarrow -\frac{1}{3}\frac{x^3}{y^3} + \log\left(\frac{y}{x}\cdot x\right) = C \qquad (\because v = y/x)$$

$$\Rightarrow -\frac{x^3}{3y^3} + \log y = C$$

Which is required general solution.

Q. 16. Find general solution of differential

quation
$$\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$$
.

(Raj. Board, 2015)

olution:

$$\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$$

$$\Rightarrow \frac{1}{1+y^2} dy = \frac{1}{1+x^2} dx$$

Integrating both sides

$$\int \frac{1}{1+y^2} dy = \int \frac{1}{1+x^2} dx$$

$$\Rightarrow \quad \tan^{-1} y = \tan^{-1} x + \tan^{-1} C$$

$$\Rightarrow \quad \tan^{-1} y - \tan^{-1} x = \tan^{-1} C$$

$$\Rightarrow \quad \tan^{-1} \left(\frac{y-x}{1+xy}\right) = \tan^{-1} C$$

$$\Rightarrow \quad \frac{y-x}{1+xy} = C$$

$$\Rightarrow \quad y-x = C (1+xy)$$

Which is required general solution.

NCERT QUESTIONS

Q. 1. Solve:
$$\cos^2 x \frac{dy}{dx} + y = \tan x$$
(CBSE, Outside Delhi, 2011)

Solution:

We have

$$\frac{dy}{dx} + y\sec^2 x = \frac{\tan x}{\cos^2 x}$$
$$\frac{dy}{dx} + y\sec^2 x = \tan x.\sec^2 x$$

Now comparing with $\frac{dy}{dx} + Py = Q$,

$$P = \sec^2 x$$
 and $Q = \tan x \sec^2 x$

thus

$$IF = e^{\int \sec^2 x \, dx} = e^{\tan x}$$

Hence the solution is:

$$y \times e^{\tan x} = \int e^{\tan x} \cdot \tan x \sec^2 x \, dx$$

$$y e^{\tan x} = \int t \cdot e^t \, dt$$
[Taking $\tan x = t \Rightarrow \sec^2 x \, dx = dt$]
$$\Rightarrow \qquad y e^{\tan x} = (t \cdot e^t - e^t) + C$$

$$\Rightarrow \qquad y e^{\tan x} = \tan x e^{\tan x} - e^{\tan x} + C$$

$$\Rightarrow \qquad y = (\tan x - 1) + Ce^{\tan x}$$

Q. 2. Solve: $e^x \tan y \, dx + (1 - e^x) \sec^2 y \, dy = 0$ (CBSE, Outside Delhi, 2011)

Solution:

$$e^{x} \tan y \, dx = -(1 - e^{x}) \sec^{2} y \, dy$$
$$-\frac{e^{x}}{1 - e^{x}} dx = \frac{\sec^{2} y}{\tan y} dy$$

Integrate on both sides,

$$-\int \frac{e^x}{1 - e^x} dx = \int \frac{\sec^2 y}{\tan y} dy$$

$$\Rightarrow \log (1 - e^x) = \log \tan y + \log C$$

$$\Rightarrow (1 - e^x) = C \tan y.$$
Q. 3. Solve : $x dy - y dx = \sqrt{x^2 + y^2} dx$

[CBSE, 2011, BSER, 14]

Solution:

$$\Rightarrow \qquad x \, dy = (\sqrt{x^2 + y^2} + y) \, dx$$

$$\Rightarrow \qquad \frac{dy}{dx} = \left(\frac{\sqrt{x^2 + y^2} + y}{x}\right)$$

The degree of numerator and denominator is same, so

Put
$$y = ux \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$\Rightarrow v + x \frac{dv}{dx} = \frac{\sqrt{x^2 + v^2 x^2} + vx}{x}$$

 $\Rightarrow \qquad v + x \frac{dv}{dx} = \sqrt{1 + v^2} + v$

 $\Rightarrow \qquad x\frac{dv}{dx} = \sqrt{1+v^2}$

 $\Rightarrow \frac{dv}{\sqrt{1+v^2}} = \frac{dx}{x}$

Integrate on both sides,

 $\Rightarrow \log \{v + \sqrt{1 + v^2}\} = \log x + \log C$

 $\Rightarrow v + \sqrt{1 + v^2} = Cx$

Now taking $v = \frac{y}{x}$,

 $\frac{y}{x} + \frac{\sqrt{x^2 + y^2}}{x} = Cx$ or $y + \sqrt{x^2 + y^2} = Cx^2$.

Q. 4. Solve: $x \frac{dy}{dx} + 2y = x^2 \log x$

Solution:

Given, $\frac{dy}{dx} + \left(\frac{2}{x}\right)y = x \log x$...(1)

Comparing with $\frac{dy}{dx} + Py = Q$,

$$P = \frac{2}{x} \text{ and } Q = x \log x$$

$$IF = e^{\int P dx} = e^{\int \frac{2}{x} dx} = e^{2 \log x}
IF = x^2$$

Now, the solution is

$$y \times x^2 = \int x^2 \times x \log x \, dx$$
$$x^2 y = \int (x^3 \log x) \, dx$$

$$\Rightarrow \qquad x^2 y = (\log x) \cdot \frac{x^4}{4} - \int \frac{1}{x} \times \frac{x^4}{4} \cdot dx$$

$$\Rightarrow \qquad x^2 y = \frac{x^4}{4} \log x - \frac{1}{4} \int x^3 dx$$

$$\Rightarrow \qquad x^2 y = \frac{x^4}{4} \log x - \frac{1}{16} x^4$$

$$\Rightarrow \qquad y = \frac{x^2}{4} \log x - \frac{1}{16} x^2 + \frac{C}{x^2}.$$

Q. 5. Solve :

 $(x^2 - y^2) dx + 2xy dy = 0$ (CBSE, Delhi, 2010)

Solution:

$$\Rightarrow \qquad (x^2 - y^2) \, dx = -2xy \, dy$$

$$\Rightarrow \frac{dy}{dx} = \frac{x^2 - y^2}{-2xy}$$

$$\Rightarrow \frac{dy}{dx} = \frac{y^2 - x^2}{2xy}$$

The degree of numerator and denominator is 2, thus it is a homogeneous function.

Put
$$y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$\Rightarrow \qquad v + x \frac{dv}{dx} = \frac{v^2 x^2 - x^2}{2x \cdot (vx)}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{v^2 - 1}{2v} - v$$

$$\Rightarrow x \frac{dv}{dx} = \frac{v^2 - 1 - 2v^2}{2v}$$

$$\Rightarrow \qquad x\frac{dv}{dx} = \frac{-1 - v^2}{2v}$$

$$\Rightarrow \qquad \int \frac{2v}{v^2 + 1} dv = -\int \frac{dx}{x}$$

$$\Rightarrow \log(v^2 + 1) = -\log x + \log C$$

$$\Rightarrow \log(v^2 + 1) = \log\left(\frac{C}{x}\right)$$

Putting $v = \frac{y}{x}$,

$$\log\left(\frac{x^2 + y^2}{x^2}\right) = \log C - \log x$$

$$\Rightarrow \log(x^2 + y^2) - 2\log x = \log C - \log x$$

$$\Rightarrow$$
 $\log (x^2 + y^2) = \log x + \log C$

$$\Rightarrow \qquad \log (x^2 + y^2) = \log (Cx)$$

$$x^2 + y^2 = Cx$$

Q. 6. Solve:

 $4\frac{dy}{dx} + 8y = 5e^{-3x}$ (CBSE, Delhi, 2007)

We have
$$4\frac{dy}{dx} + 8y = 5e^{-3x}$$

or
$$\frac{dy}{dx} + 2y = \frac{5}{4}e^{-3x}$$

Hence
$$P = 2$$
 and $Q = \frac{5}{4}e^{-3x}$

$$IF = e^{\int P dx} = e^{\int 2 dx} = e^{2x}$$

Now
$$ye^{2x} = \int_{-4}^{5} e^{-3x} e^{2x} dx + C$$

$$\Rightarrow \qquad ye^{2x} = -\frac{5}{4}e^{-x} + C$$

$$\Rightarrow \qquad \qquad y = -\frac{5}{4}e^{-3x} + Ce^{-2x}$$